人机对抗作为人工智能研究的前沿方向, 已成为国内外智能领域研究的热点, 并为探寻机器智能内在生长机制和关键技术验证提供有效试验环境和途径. 本文针对巨复杂、高动态、不确定的强对抗环境对智能认知和决策带来的巨大挑战, 分析了人机对抗智能技术研究现状, 梳理了其内涵和机理, 提出了以博弈学习为核心的人机对抗智能理论研究框架; 并在此基础上论述了其关键模型: 对抗空间表示与建模、态势评估与推理、策略生成与优化、行动协同与控制; 为复杂认知与决策问题的可建模、可计算、可解释求解奠定了基础. 最后, 本文总结了当前应用现状并对未来发展方向进行了展望。