We develop theoretical foundations and practical algorithms for vehicle routing with time-dependent travel times. We also provide new benchmark instances and experimental results. First, we study basic operations on piecewise linear arrival time functions. In particular, we devise a faster algorithm to compute the pointwise minimum of a set of piecewise linear functions and a monotonicity-preserving variant of the Imai-Iri algorithm to approximate an arrival time function with fewer breakpoints. Next, we show how to evaluate insertion and deletion operations in tours efficiently and update the underlying data structure faster than previously known when a tour changes. Evaluating a tour also requires a scheduling step which is non-trivial in the presence of time windows and time-dependent travel times. We show how to perform this in linear time. Based on these results, we develop a local search heuristic to solve real-world vehicle routing problems with various constraints efficiently and report experimental results on classical benchmarks. Since most of these do not have time-dependent travel times, we generate and publish new benchmark instances that are based on real-world data. This data also demonstrates the importance of considering time-dependent travel times in instances with tight time windows.
翻译:我们为具有时间性旅行时间的车辆路线发展理论基础和实际算法。 我们还提供新的基准实例和实验结果。 首先,我们研究关于Papwith线性抵达时间功能的基本操作。 特别是, 我们设计一个更快的算法, 计算一套小片线性功能的点性最小值, 以及Imai- Iri算法的单调性保存变体, 以低断点来估计到达时间功能。 其次, 我们展示如何高效地评价旅行中插入和删除操作, 并更新在旅行改变时比以前已知的更快速的基本数据结构。 评估旅游还需要一个在时间窗口和时间性旅行时间性时的非三边性日程安排步骤。 我们用这些结果来显示如何在线性时间内完成这项工作。 基于这些结果, 我们开发一个本地的搜索超常度来解决现实世界车辆的路线问题, 并报告古典基准的实验结果。 由于其中多数没有时间性旅行时间性, 我们生成并发布基于现实世界数据的新的基准实例。 这个数据还表明在紧的窗口中考虑时间性旅行时间性的重要性 。