The widespread availability of image editing tools and improvements in image processing techniques allow image manipulation to be very easy. Oftentimes, easy-to-use yet sophisticated image manipulation tools yields distortions/changes imperceptible to the human observer. Distribution of forged images can have drastic ramifications, especially when coupled with the speed and vastness of the Internet. Therefore, verifying image integrity poses an immense and important challenge to the digital forensic community. Satellite images specifically can be modified in a number of ways, including the insertion of objects to hide existing scenes and structures. In this paper, we describe the use of a Conditional Generative Adversarial Network (cGAN) to identify the presence of such spliced forgeries within satellite images. Additionally, we identify their locations and shapes. Trained on pristine and falsified images, our method achieves high success on these detection and localization objectives.
翻译:图像编辑工具的广泛使用和图像处理技术的改进使得图像操纵非常容易。通常,易于使用但复杂的图像操纵工具会产生人类观察员无法察觉的扭曲/变化。传播伪造图像可能会产生巨大影响,特别是当互联网的速度和广度同时出现时。因此,核实图像完整性对数字法医界构成了巨大和重大的挑战。卫星图像可以以多种方式具体修改,包括插入物体以隐藏现有的场景和结构。我们在本文件中描述了使用一个条件性精巧的基因对称网络(cAN)来识别卫星图像中存在这种复制的伪造物。此外,我们查明了这些图象的位置和形状。我们用原始和伪造的图像培训了这些图象,我们的方法在这些探测和本地化目标上取得了很大成功。