项目名称: 真核生物鞭毛或纤毛解聚的分子基础

项目编号: No.31330044

项目类型: 重点项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 潘俊敏

作者单位: 清华大学

项目金额: 282万元

中文摘要: 纤毛或鞭毛是以细胞微管为主而形成的突出于细胞表面的结构,起着细胞运动和感应器官的作用。它感应细胞周围的环境,调控动物的发育和调节各组织器官的正常生理功能。纤毛在形成、维系、或功能上的缺陷会导致发育异常或疾病包括肾脏疾病,内脏翻转等。纤毛解聚活性是纤毛形成和维系的重要因素,同时也参与了细胞周期与细胞分化。我们的工作模型是细胞内源或外源信号诱导信号传导过程包括钙离子和蛋白质磷酸化的变化,进而调控“鞭毛内运输”(IFT)及其他效应分子,从而导致轴丝微管的解聚和轴丝附属结构的解体。我们利用模式生物衣藻作为模型研究纤毛解聚的分子机理。本项目研究的内容包括1)鞭毛解聚重要蛋白或基因的鉴定;2)细胞周期素依赖激酶的类激酶 CDKL1的磷酸化机制与分子功能;3)钙离子参与纤毛解聚的机制与IFT运输的调控。我们的研究将有助于从分子机理上增强对纤毛调控的认识,并将为纤毛相关疾病的诊断、预防和治疗提供理论基础。

中文关键词: 纤毛;细胞骨架;衣藻;"鞭毛内运输”;

英文摘要: Cilia and flagella (interchangeable terms) are microtubule-based cellular surface protrusions. They play essential roles in cell motility, signaling and cell division to regulate various cellular processes including sensory transduction, development, tissues and organ homeostasis. Thus, defects in the structure and/or function of cilia/flagella have been implicated in various human disorders including renal disease, respiratory disorders, development abnormality and even diabetes. The formation, length control and resorption of cilia require coordinated regulation of assembly and disassembly activities. Suppression of disassembly is required for cilia formation and maintenance, whereas activation of disassembly is essential for resorption of cilia/flagella, which is prelude to cell division, differentiation and response to stress. We are using Chlamydomonas reinhardii, a unicellular green alga, as a model organism to study the mechanisms underlying ciliary resorption. In this proposal, we propose to study the following: 1) identification of genes that are important for ciliary resorption by using comparative proteomics and mutants defective in ciliary resorption; 2) study the regulation and function of a cyclin dependent kinase like kinase whose defects inhibits ciliary resorption; 3) examine the role and regulation of calcium in regulation of ciliary disassembly and IFT transport. Since cilia are conserved cellular organelles, our research findings in Chlamydomonas will have great impact on understanding cilia-related human disorders and may provide guidance on possible diagnostics and treatment for these diseases.

英文关键词: cilia;cytoskeleton;Chlamydomonas;IFT

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
36+阅读 · 2021年11月1日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
53+阅读 · 2021年1月29日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
38+阅读 · 2020年8月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
生物数据挖掘中的深度学习,诺丁汉特伦特大学
专知会员服务
65+阅读 · 2020年3月5日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
机器学习医学进展有助改善肠道疾病检测
TensorFlow
0+阅读 · 2021年8月31日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
18+阅读 · 2019年3月7日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
27+阅读 · 2020年6月19日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关主题
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
36+阅读 · 2021年11月1日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
53+阅读 · 2021年1月29日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
38+阅读 · 2020年8月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
生物数据挖掘中的深度学习,诺丁汉特伦特大学
专知会员服务
65+阅读 · 2020年3月5日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员