近年来,为了提高学习任务在图数据集上的性能,人们提出了各种图对比学习模型。虽然有效且普遍,但这些模型通常是经过仔细定制的。特别是,尽管所有最近的研究都创建了两种对比的视角,但它们在视图增强、架构和目标方面存在很大差异。如何针对特定的图学习任务和数据集从零开始建立你的图对比学习模型仍然是一个开放的问题。本文旨在通过研究对比学习过程中图信息的转换和转移,提出一种信息感知的图对比学习框架InfoGCL,以填补这一空白。这个框架的关键是遵循信息瓶颈原则减少相互之间的信息对比部分,同时保持任务相关信息完整的单个模块的水平和整个框架,信息损失在图表示学习可以最小化。我们首次表明,所有最近的图对比学习方法可以统一在我们的框架。我们在节点和图分类基准数据集上验证了我们的理论分析,并证明我们的算法明显优于目前的水平。