项目名称: 双曲空间上几类偏微分方程的研究

项目编号: No.11201140

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 何海洋

作者单位: 湖南师范大学

项目金额: 22万元

中文摘要: 本项目拟讨论双曲空间上两类偏微分方程,一类是椭圆方程,一类是抛物方程。关于椭圆方程我们主要研究双曲空间上半线性椭圆方程在群作用下不变的解的存在性; 临界方程无穷多变号解的存在性;Henon方程基态解的性质及解的分类和有界区域上椭圆方程解的存在性等.关于抛物方程,我们希望得到抛物方程的门槛结果。双曲空间是单连通的非紧黎曼流形且其截面曲率为-1,而欧氏空间的曲率为0。虽然N-维双曲空间与N-维欧氏空间是微分同胚的,然而其负的截面曲率使得它有不同的几何与拓扑性质。 本项目希望通过对以上问题的研究,揭示双曲空间与欧氏空间在偏微分方程的研究中的共性与区别。

中文关键词: 双曲空间;半线性椭圆方程;Henon-Hardy 方程;渐近行为;

英文摘要: The program will study some elliptic equaitons and parabolic equations on hyperbolic space. For the elliptic equations, we mainly discuss the existence of the solution which is invariant under some group action for semilinear elliptic problems, the existence of infinity many solutions for critical equations on hyperbolic space, the asymptotic behavior of the ground state solutions and the classificaion of the solutions for Henon equation on hyperbolic space and the existence of solutions of some elliptic equations on bounded domain. For the parabolic equation, we hope to get the threshold result for some parabolic problem on hyperbolic space.Hyperbolic space is a simply connected non-compact Riemannian manifold with constant sectional curvature ?1. This contrasts with Euclidean Space, where the sectional curvatrue is zero. Although hyperbolic space with N-dimension is diffeomorphic to Euclidean space with N-dimension , its negative-curvature metric gives it very different geometric and topological properties. Through studying the above problems, we want to make a good understanding about the commonness and difference between the study of partial differential equations in hypebolic space and Euclidean space.

英文关键词: Hyperbolic space;Semilinear elliptic equation;Henon-Hardy equation;Asymptotic behavior;

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
29+阅读 · 2020年12月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
团队“躺平”,你要怎么带?
创业邦杂志
1+阅读 · 2022年2月21日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
12+阅读 · 2022年2月14日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
23+阅读 · 2018年10月1日
小贴士
相关主题
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
29+阅读 · 2020年12月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
团队“躺平”,你要怎么带?
创业邦杂志
1+阅读 · 2022年2月21日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
12+阅读 · 2022年2月14日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员