项目名称: 含边界层与界面层的输运方程数值算法研究

项目编号: No.11301336

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 唐敏

作者单位: 上海交通大学

项目金额: 22万元

中文摘要: 输运方程在物理、生物等众多领域中都有广泛应用。由于方程解依赖于多个变量,维数较高,这给数值求解带来很大困难,计算量太大。因此人们在平均自由程小时往往采用扩散极限近似。在实际应用中,不同物理区域粒子的平均自由程可能差别很大。当输运区域和扩散区域连接,或者是界面处存在反射、折射时,解中可能含边界层与界面层。现有的算法需要在每个界面层内放足够多的网格点来捕捉解的快速变化。设计能用粗网格捕捉边界层、界面层的算法以大大减少计算量是该领域的研究热点之一。 本项目研究含有间断系数的中子输运方程的速度离散和空间离散,一方面给出合适的界面处的离散反射折射算子,使得速度离散方程具有和积分方程一致的扩散极限界面连接条件;另一方面设计新的空间离散格式,使得算法可以用粗网格捕捉到中子输运方程解中的高维边界层、界面层。并进一步把捕捉高维边界层、界面层的算法扩展到更一般的的碰撞核和双群输运方程。

中文关键词: 输运方程;扩散极限;边界层;界面层;一致收敛

英文摘要: Transport equations are widely used in a lot of physical and biological problems. Due to the dependence of multivariables and high dimensionality, its numerical simulations are difficult because of the large computational cost after discretizations. Therefore people approximate the solution by its diffusion limit when the mean free path is small. In real applications, the mean free path can vary widely in different physical domains. When the transport and diffusion regions connect, or there are reflections and refractions at the interfaces, there may exist boundary/interface layers in the solution. Existing schemes require enough meshes in each interface layers to capture the fast changes in the solutions. Designing numerical schemes that can capture the boundary and interface layers by coarse meshes, so that to reduce many of computational costs, is one of the hot topic in this area. This project studies the velocity and space discretizations for the neutron transport equation with discontinuous coefficients. On the one hand, we give the proper discrete reflection and refraction operators, which make the discrete ordinate equation and the original integral equation have the same interface conditions for their diffusion limit; on the other hand, we design new space discretizations, which can capture the hig

英文关键词: transport equation;diffusion limit;boundary layer;interface layer;uniform convergence

成为VIP会员查看完整内容
0

相关内容

【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
104+阅读 · 2021年8月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
【夯实基础】卡尔曼滤波
极市平台
1+阅读 · 2021年11月3日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
【开放电子书】概率编程导论,301页pdf
专知
4+阅读 · 2021年10月21日
13个你一定要知道的PyTorch特性
极市平台
0+阅读 · 2021年10月20日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月16日
Summarization with Graphical Elements
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
136+阅读 · 2018年10月8日
小贴士
相关主题
相关VIP内容
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
81+阅读 · 2022年1月7日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
104+阅读 · 2021年8月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
【夯实基础】卡尔曼滤波
极市平台
1+阅读 · 2021年11月3日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
【开放电子书】概率编程导论,301页pdf
专知
4+阅读 · 2021年10月21日
13个你一定要知道的PyTorch特性
极市平台
0+阅读 · 2021年10月20日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员