Most methods for automated full-bore rock core image analysis (description, colour, properties distribution, etc.) are based on separate core column analyses. The core is usually imaged in a box because of the significant amount of time taken to get an image for each core column. The work presents an innovative method and algorithm for core columns extraction from core boxes. The conditions for core boxes imaging may differ tremendously. Such differences are disastrous for machine learning algorithms which need a large dataset describing all possible data variations. Still, such images have some standard features - a box and core. Thus, we can emulate different environments with a unique augmentation described in this work. It is called template-like augmentation (TLA). The method is described and tested on various environments, and results are compared on an algorithm trained on both 'traditional' data and a mix of traditional and TLA data. The algorithm trained with TLA data provides better metrics and can detect core on most new images, unlike the algorithm trained on data without TLA. The algorithm for core column extraction implemented in an automated core description system speeds up the core box processing by a factor of 20.
翻译:自动全圆岩芯核心图像分析的大多数方法(描述、颜色、属性分布等)都以单独的核心柱子分析为基础。核心通常在框中成像,因为每个核心柱子的图像需要花费大量时间。工作为从核心盒中提取核心柱子提供了创新的方法和算法。核心盒成像的条件可能差别很大。对于需要大型数据集描述所有可能的数据变异的机器学习算法来说,这些差异是灾难性的。然而,这些图像有一些标准特征――一个框和核心。因此,我们可以模仿不同环境,在这项工作中描述独特的增强功能。它被称为模板式增强(TLA) 。该方法在各种环境中被描述和测试,其结果被比较为在“传统”数据以及传统和TLA数据组合方面受过训练的算法。由TLA数据培训的算法提供了更好的衡量标准,并且可以探测大多数新图像的核心,这与在没有TLA数据方面受过训练的算法不同。在自动核心描述系统中执行的核心柱子提取算法加速核心框处理20倍的系数。