项目名称: 微分方程的不可积性与动力学行为

项目编号: No.11371166

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 史少云

作者单位: 吉林大学

项目金额: 56万元

中文摘要: 长期以来,人们普遍认为不可积微分方程一般呈现出各种各样的复杂现象,但上述观点始终没有得到多少严格的论证。近年来的一些研究成果表明:方程的不可积性与拓扑熵、Melnikov积分以及Galois群的动力学行为之间有着密切的联系。本项目中,我们将结合微分Galois方法、Melnikov方法以及拓扑动力系统理论,研究微分方程的Galois不可积性所蕴含的动力学行为。研究内容包括:1) 探讨一般微分方程的Galois不可积性与其拓扑熵之间的联系,进而研究不可积微分方程的混沌等复杂行为。2) 研究(线性)微分方程的Liouville不可积性与相应Galois群的动力学性质之间的关系。3) 研究Galois不可积性与Melnikov积分之间的关系。4)发展能适当刻画和反映系统复杂行为的奇性分析方法。

中文关键词: 微分Galois理论;不可积性;复杂行为;Painleve性质;弱Painleve猜测

英文摘要: For a long time, it is generally considered that non-integrable differential equations often exhibit a variety of complex phenomena, but there have been little strict argument for this observation so far. In recent years, several important works implied t

英文关键词: Differential Galois theory;nonintegrability;complex behavior;Painleve property;weak Painleve conjecture

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
48+阅读 · 2021年8月4日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
11+阅读 · 2021年5月26日
专知会员服务
15+阅读 · 2021年3月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
双十一你买了什么数码好物?
ZEALER订阅号
0+阅读 · 2021年11月6日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
从动力学角度看优化算法:GAN的第三个阶段
PaperWeekly
11+阅读 · 2019年5月13日
独家 | 带你认识机器学习的的本质(附资料)
数据派THU
22+阅读 · 2019年3月13日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
45+阅读 · 2019年12月20日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关主题
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
48+阅读 · 2021年8月4日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
11+阅读 · 2021年5月26日
专知会员服务
15+阅读 · 2021年3月4日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
双十一你买了什么数码好物?
ZEALER订阅号
0+阅读 · 2021年11月6日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
从动力学角度看优化算法:GAN的第三个阶段
PaperWeekly
11+阅读 · 2019年5月13日
独家 | 带你认识机器学习的的本质(附资料)
数据派THU
22+阅读 · 2019年3月13日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
45+阅读 · 2019年12月20日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
微信扫码咨询专知VIP会员