项目名称: 基于海浪传感技术的水上无人机自主起降控制方法研究

项目编号: No.61273336

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 范国梁

作者单位: 中国科学院自动化研究所

项目金额: 81万元

中文摘要: 水上无人机由于其独特的水上起降和水面驻留作业能力,在军用民用方面都有极为广泛的用途。基于海浪传感的自主起降控制技术可以减少穿浪钻水冲击过载,提高水面起飞加速能力和高速滑行的平稳性,可以充分利用波面力量进行滑跃起飞,是提高水上飞机抗浪性的一项关键技术。本项目面向水上无人机自主起降过程中的海浪传感机理和抗浪增强控制问题,开展面向控制的海浪检测预报机理、基于海浪传感的水面自主决策逻辑、海浪干扰下的高速稳定穿浪与波面跟随控制方法的研究,着力突破基于飞机运动的海浪参数反演和低掠角波面检测预测方法、高速滑行不稳定机理及波面加速最优轨迹、高速滑行波面跟随与边界控制三个关键科学问题,进行海浪传感技术的物理仿真和水上无人机自主起降控制方法的数学仿真验证,给出基于海浪传感的水上无人机自主控制方法,提高我国水上飞机在远洋高海况下的水面生存能力和无人作业自动化水平,为我国水上飞机装备建设提供基础理论支持。

中文关键词: 水上无人机;自主起降;海浪传感;波面跟随控制;

英文摘要: Because of its unique water movements and the water resides operational capability, unmanned seaplanes are widely used in terms of both military and civilian field. Autonomous takeoff and landing control based on wave sensing is a key technology to improve the seaplanes anti-waves capability,as a result of reducing wave piercing load,improving accelerating and high speed taxiing capibility,taking off for large waves like ramps on an aircraft carrier.This project focus on wave-sensing mechanism and the control problem for unmanned seaplane autonomous taking off and landing. Control-oriented wave detection & prediction mechanism, autonomous decision-making logic for high-speed wave taxiing and waves piercing & wave following control methods will be researched in detail. Breakthroughs will be made in the inversion of wave parameters based on aircraft movement, wave profile detection & prediction mechanism at low grazing angle, the unstable movement mechanism for high-speed taxiing, optimal acceleration trajectory, high-speed wave following control & attitude envelop protect control under optimal wave filter.Physical simulation will be made for wave sensing technology ,following by mathematical simulation for unmanned seaplane autonomous takeoff and landing control method, in order to give the method of wave-sensing

英文关键词: Unmanned Seaplane;Autonomous Takeoff and Landing;Wave-Sensoring;Wave Profile Following Control;

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
无人机地理空间情报在智能化海战中的应用
专知会员服务
114+阅读 · 2022年4月14日
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
61+阅读 · 2022年3月20日
专知会员服务
140+阅读 · 2021年3月13日
专知会员服务
132+阅读 · 2021年2月17日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
国外有人/无人平台协同作战概述
无人机
102+阅读 · 2019年5月28日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
20+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Communication Bounds for Convolutional Neural Networks
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
35+阅读 · 2021年8月2日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
53+阅读 · 2018年12月11日
小贴士
相关资讯
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
国外有人/无人平台协同作战概述
无人机
102+阅读 · 2019年5月28日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
20+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
相关论文
Communication Bounds for Convolutional Neural Networks
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
35+阅读 · 2021年8月2日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
53+阅读 · 2018年12月11日
微信扫码咨询专知VIP会员