三角学中,这么一堆公式其实就说了2个事而已

2019 年 4 月 17 日 遇见数学

[遇见数学创作小组] 作者: 心如止水

心如止水,Java程序员。善于把复杂的数学知识,简洁易懂地表达出来

★提示: 如果文中数字/公式显示较大, 请点击右上角中"刷新"即可恢复正常. 加入 [创作小组] 请点击这里

在学三角这部分的时候,有些书习惯列出诱导公式(induction formula),都列出来的话可以写小半张纸。

➣ 那什么是“诱导公式”呢?

“诱导公式”应该是一个老的翻译,“诱导”也就是我们今天所说的“推导”,除了公理之外,那有什么公式不是推导出来的呢?所以说起这种名字就意味着根本就没有名字,因为实在太显而易见了,所以没有人好意思大叫“尤里卡”,没有人好意思冠名。

但是没有名字,交流起来又不方便,所以就干脆这么叫了,这种叫法类似于“孩他娘”。

➣ “显而易见”在哪里?

一堆式子本质上只说了两件事情:

① 乘上 -1 的几何意义是转 ,乘上 i 就是旋

 的几何意义是  轴对称。

上面是两个老调重弹,然后,再结合两个显而易见的已知事实:

③   的几何意义是不变。

④ co 的含义是余角。

这就是所有的“诱导公式”。

你可以看出,这说的都是些最基础的东西,角函数就是这样的地位:它是二维在一维的投影;旋转和平移的桥梁;可以看做比值,它却有简洁的几何定义。

➣ 如此简单的事实是怎么变成那么多公式的?

首先,诱导公式并不是用几何形式写的,而用函数语言写的,所以你需要换一种表示方法,或者说换一种观察角度。而我们对这种角度是陌生的,所以就容易产生混乱的感觉,只要习惯了是一样的。

其次,之所以诱导公式能写很长一串,就是因为把 tan/sec/cot/csc 都印上去了,其实这些都可以通过 sin/cos 的变化一眼就看出来,印上去是为了实际的查阅方便,不是为了记忆。不解释一下会“吓人一跳”,懂了之后就很简单,看似很多,其实就那么回事。

➣怎么样从几何视角转换为函数视角呢?

 和 

 和 

其实就是复数的乘法


 和 

 可以看作投影,“平面上关于  轴 对称的点”,在  轴 的投影自然是一致的, 轴的投影刚好符号相反。


 和 

任何角转一圈,从静止的角度来看都是不变的。

 和 

cos 的 意思是余角的正弦 ,余角的余角还是原来的角,所以 -α 就是在原来角和余角之间切换。

➣ 实际该怎么使用呢?

之所以罗列出诱导公式,最重要的目的就是忘记的时候,对照查阅的,如果你手边没有对照表,其实只要动动脑筋就可以想明白:

● 这些变化都是以  为单位的,所以说只要看到  的倍数,就知道可以应用诱导公式。

● 如果是  奇数倍就是在原来角和余角之间切换,如果是  奇数倍就是  ;如果是  的奇数倍,就是 ×-1 ;如果发现是上述情况,但是符号不对,那就通过取对称变换符号。

真正重要的公式是“积化和差”,从名字就会看出这个东西有降次作用,在对数表发明之前,天学家们就已经用这个公式来简化计算了,纳皮尔发明对数表,也可能受到了它的启发。

参考资料

  • https://zh.wikipedia.org/wiki/诱导公式

登录查看更多
1

相关内容

【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
128+阅读 · 2020年5月26日
【干货书】流畅Python,766页pdf,中英文版
专知会员服务
224+阅读 · 2020年3月22日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
激活函数还是有一点意思的!
计算机视觉战队
12+阅读 · 2019年6月28日
干货!神经网络原来是这样和数学挂钩的
图灵教育
13+阅读 · 2019年5月21日
为什么所有人都报了这个虐人到哭的训练营?!
人工智能头条
5+阅读 · 2019年5月15日
特征方程的物理意义
算法与数学之美
6+阅读 · 2019年5月13日
面试时让你手推公式不在害怕 | 梯度下降
计算机视觉life
14+阅读 · 2019年3月27日
单位圆与三角函数
遇见数学
14+阅读 · 2019年1月22日
可视化理解四元数,愿你不再掉头发
计算机视觉life
31+阅读 · 2019年1月2日
SVM大解密(附代码和公式)
AI100
6+阅读 · 2018年4月7日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
激活函数还是有一点意思的!
计算机视觉战队
12+阅读 · 2019年6月28日
干货!神经网络原来是这样和数学挂钩的
图灵教育
13+阅读 · 2019年5月21日
为什么所有人都报了这个虐人到哭的训练营?!
人工智能头条
5+阅读 · 2019年5月15日
特征方程的物理意义
算法与数学之美
6+阅读 · 2019年5月13日
面试时让你手推公式不在害怕 | 梯度下降
计算机视觉life
14+阅读 · 2019年3月27日
单位圆与三角函数
遇见数学
14+阅读 · 2019年1月22日
可视化理解四元数,愿你不再掉头发
计算机视觉life
31+阅读 · 2019年1月2日
SVM大解密(附代码和公式)
AI100
6+阅读 · 2018年4月7日
贝叶斯网络入门
论智
15+阅读 · 2017年11月19日
Top
微信扫码咨询专知VIP会员