动态GNN大佬Giovanni主讲,《图神经网络与动态系统》教程(附148页ppt)

2022 年 8 月 8 日 图与推荐

图神经网络是近几年的热点。图神经网络(GNN)领域取得了快速和令人难以置信的进展。图神经网络,又称图深度学习、图表示学习或几何深度学习,已成为机器学习特别是深度学习领域发展最快的研究课题之一。这波图论和深度学习交叉的研究浪潮也影响了其他科学领域,包括推荐系统、计算机视觉、自然语言处理、归纳逻辑编程、程序合成、软件挖掘、自动规划、网络安全和智能交通。


将能量最小化的动力系统在几何和物理中是普遍存在的。本文提出一种GNN的梯度流框架,其中方程遵循可学习能量的最速下降方向。这种方法允许从多粒子的角度解释GNN的演化,通过对称的“信道混合”矩阵的正和负特征值学习特征空间中的吸引力和斥力。我们对解决方案进行频谱分析,并得出结论,梯度流图卷积模型可以诱导由图高频主导的动力学,这是理想的异构数据集。我们还描述了通用GNN架构的结构约束,允许将它们解释为梯度流。我们进行了彻底的消融研究,证实了我们的理论分析,并展示了简单和轻量级模型在现实世界的同质性和异质性数据集上的有竞争力的性能。

力的性能。





登录查看更多
1

相关内容

自适应系统,在AI中,多指富有变化的系统,能随着环境的改变而进行自适应改变,一般这样的系统多采取自适应机器学习方法。
最新《图神经网络》报告,29页ppt建模阐述GNN 与GAT等
专知会员服务
65+阅读 · 2022年8月25日
图神经网络综述
专知会员服务
197+阅读 · 2022年1月9日
如何建模动态图?看这份《时序图神经网络》26页ppt
专知会员服务
139+阅读 · 2020年7月25日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2020年7月13日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
15+阅读 · 2019年9月30日
VIP会员
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员