社交网络和分子图等结构化的图形数据在现实世界中随处可见。设计先进的图结构数据表示学习算法,促进下游任务的完成,具有重要的研究意义。图神经网络(GNNs)将深度神经网络模型推广到图结构数据,为从节点级或图级有效学习图结构数据表示开辟了一条新途径。由于其强大的表示学习能力,GNN在从推荐、自然语言处理到医疗保健等各种应用中获得了实际意义。近年来,它已成为一个热门的研究课题,越来越受到机器学习和数据挖掘界的关注。本教程涵盖了相关和有趣的主题,包括使用GNNs在图结构数据上的表示学习、GNNs的鲁棒性、GNNs的可扩展性和基于GNNs的应用程序。
目录内容: 引言 Introduction 基础 Foundations 模型 Models 应用 Applications