Chelsea Finn是Google Brain的研究科学家,也是加州大学伯克利分校的博士后。在2019年9月,她将加入斯坦福大学的计算机科学系担任助理教授。 Finn的研究兴趣在于使机器人和其他代理能够通过学习和交互来发展广泛的智能行为的能力。为此,芬恩开发了深度学习算法,用于同时学习机器人操纵技能中的视觉感知和控制,用于非线性奖励函数的可伸缩获取的逆强化方法以及可以在两个视觉系统中实现快速,少拍适应的元学习算法感知和深度强化学习。 Finn在麻省理工学院获得EECS的学士学位,并在加州大学伯克利分校获得CS的博士学位。她的研究得到了NSF研究生奖学金,Facebook奖学金C.V.的认可。她获得了Ramamoorthy杰出研究奖和《麻省理工学院技术评论35分35奖》,她的工作已被《纽约时报》,《连线》和彭博社等多家媒体报道。

VIP内容

元强化学习算法可以利用以前的经验来学习如何学习,从而使机器人更快地获得新技能。然而,目前关于元强化学习的研究大多集中在非常狭窄的任务分布上。例如,一个常用的元强化学习基准将模拟机器人的不同跑步速度作为不同的任务。当策略在如此狭窄的任务分布上进行元训练时,它们不可能推广到更快地获得全新的任务。因此,如果这些方法的目标是能够更快地获得全新的行为,我们就必须在任务分布上评估它们,任务分布必须足够广泛,以使新行为普遍化。

成为VIP会员查看完整内容
0
21
Top