域适应问题是要将在一个有标注的域学习到的特征和表示迁移到另一个无标注的目标与中。在本文中,我们主要关注域适应问题在两个域的标签空间不对齐的情况下的特征迁移, 即两个域中都有从未在另一个域中出现的 ’未知类‘,这被称作通用域适应(Universal Domain Adaptation)。以往的文章中通常将’未知类‘当做一个类来处理,而忽略了其内在的分布。尤其是当’未知类‘较多的时候,简单得将其当做一个类会使得其在特征空间中不够紧凑,从而导致其与共有类混淆。为了解决这个问题,本文提出了域共识聚类(domain consensus clustering),来同时将共有类和未知类进行聚类,以更好的发掘隐空间(latent space)中的信息。具体来讲,我们首先在两个层面来计算域共识,语义层面,和样本层面。在语义层面,我们通过源域和目标域中聚类的最近邻一致性来识别可能的共有类的聚类(cycle-consistency)。在样本层面,我们设计了域共识分数(domain consensus score)来评估通过最近邻一致性匹配到的聚类的匹配程度。基于以上的设计,我们可以根据两个域的聚类间的匹配程度动态的调整目标域中聚类的数目,从而在完全没有先验信息和标注的情况下在目标域进行聚类。实验 证明我们的方法具有很好地优越性和泛化性,在Universal/Open-set/Partial Domain Adaptation 三个场景下的多个数据集上达到了最优性能。