Two simple undirected graphs are cospectral if their respective adjacency matrices have the same multiset of eigenvalues. Cospectrality yields an equivalence relation on the family of graphs which is provably weaker than isomorphism. In this paper, we study cospectrality in relation to another well-studied relaxation of isomorphism, namely $k$-dimensional Weisfeiler-Leman ($k$-WL) indistinguishability. Cospectrality with respect to standard graph matrices such as the adjacency or the Laplacian matrix yields a strictly finer equivalence relation than $2$-WL indistinguishability. We show that individualising one vertex plus running $1$-WL already subsumes cospectrality with respect to all such graph matrices. Building on this result, we resolve an open problem of F\"urer (2010) about spectral invariants and strengthen a result of Godsil (1981) about commute distances. Looking beyond $2$-WL, we devise a hierarchy of graph matrices generalising the adjacency matrix such that $k$-WL indistinguishability after a fixed number of iterations can be captured as a spectral condition on these matrices. Precisely, we provide a spectral characterisation of $k$-WL indistinguishability after $d$ iterations, for $k,d \in \mathbb{N}$. Our results can be viewed as characterisations of homomorphism indistinguishability over certain graph classes in terms of matrix equations. The study of homomorphism indistinguishability is an emerging field, to which we contribute by extending the algebraic framework of Man\v{c}inska and Roberson (2020) and Grohe et al. (2022).
翻译:两种简单的非方向图形是光谱, 如果它们各自的相邻矩阵具有相同的相邻性。 光谱性在图表组中产生的等值关系比二元性低得多。 在本文中, 我们研究的是相对于另一个被广泛研究的异形性放松的共光性, 即 $k$- 维Sfeiler- Leman (k$- WL) 的不可分性。 标准图形矩阵( 如相邻性或拉普尔基矩阵) 的共光度比 $2 美元- WL 的特性不易变异性具有严格的细等值关系 。 我们显示, 将一个顶性加上运行$$- WL 的次光度, 与所有这样的图形矩阵有关。 在此基础上, 我们解决了一个F\\ urer (2010) 有关光度的不易变异性问题, 并加强了 Godsil (1981) 有关通向更近距离的结果 。 超过 2美元, 我们设计了一个图表矩阵的等级, 直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径基基基基基基基基底基底基底基底基底基底基底, 。