目标检测 | Anchor free的目标检测进阶版本

2020 年 2 月 7 日 计算机视觉战队

点击蓝字关注我们

_

今天说的是《Soft Anchor-Point Object Detection》,其也是最近关于anchor free的目标检测的论文,作者来自于CMU,一作同样也是FSAF(2019 CVPR)的作者。该论文的出发点还是在样本选择和FPN特征选择层面。

背景

_

Anchor free是目标检测领域的一个研究热点,其主要可以分为anchor-point和keypoint两类。后者在往往在一个高分辨率的特征图上进行检测,其优点是准确率高,但是计算量大。而anchor-point的方法往往在多个分辨率上进行检测,结构简单,速度更快。作者认为anchor-point的方法性能不高主要还是在于训练的不充分,主要是注意力偏差(attention bias)和特征选择(feature selection)。因而作者提出了两种策略:1)soft-weighted anchor points对不同位置的样本进行权重分配,2)soft-selected pyramid levels,将样本分配到多个分辨率,并进行权重加权。

方法框架

_

整体框架其实和FSAF是类似

Soft-Weighted Anchor Points ●

清晰的目标更容易获得关注和更高的分数,而边缘或者被遮挡的目标比较难检测。具体的问题如下:

上图中有五个足球运动员,分类输出的得分图score map如图b所示,可以看到有两个运动员的得分区域占了主导地位。甚至这两个运动员的得分区域还侵占了其他运动员的得分区域。

作者认为引起该问题的主要原因是特征不对齐,位于gt边缘的anchor和位于中心的anchor不应被同等对待。解决思路就是对不同位置的样本引入不同的权重,其离gt的中心越近,其权重越高,离gt中心越远,其权重越低(因为边缘往往意味着包含很多背景信息)。从而引入了广义中心度来确定权重:

概述我们的训练策略与h soft-weighted anchorpoints和soft-selected pyramid levels。黑条表示正锚定点对网络损耗贡献的指定权重。

Soft-Selected Pyramid Levels ●

该问题实际上在FSAF中也研究过,即如何选择合适的分辨率(尺度)来进行目标的检测。FSAF是通过loss来选择合适的分辨率。该论文同时也借鉴了FoveaBox将一个anchor映射到多个分辨率进行检测的思想(实际上工程中也会用到)来提升性能。同时作者还给不同的分辨率分配不同的权重。具体地,作者额外训练了一个子网络来预测不同尺度的权重,该网络具体为:

而该子网络的输入,是在不同分辨率上利用roialign提取gt(ground truth)的特征,并concat起来。

实验结果

_

作者和FSAF(基于anchor-free分支)进行比较,soft-weighted anchor points(SW)策略提升了1.1个点,soft-selected pyramid levels(SS)提升了1个点。作者还采用了BFPN(2019 CVPR Libra RCNN中的特征融合策略)进行了加强,还能有性能提升。

可视化结果

论文最好的性能是47.4,在R50上也达到了41.7。

总结

_

作者在FSAF的基础上进一步地分析了现有的两个问题:注意力偏差和特征选择问题。前一个问题通过对不同样本加权实现,后一个问题通过对不同分辨率加权实现,论文讲述清晰,思路简单。同时也要注意到,该论文特征选择预测网络的训练问题,工程上是否真的有效还需进一步地尝试验证。

论文地址:https://arxiv.org/pdf/1911.12448.pdf


通知

计算机视觉战队正在组建深度学习技术群,欢迎大家私信申请加入!

加入“计算机视觉战队”,一起学习!

如果想加入我们“计算机视觉战队”,请扫二维码加入学习群。计算机视觉战队主要涉及机器学习、深度学习等领域,由来自于各校的硕博研究生组成的团队,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。

我们开创一段时间的“ 计算机视觉协会 ”知识星球,也得到很多同学的认可,我们定时会推送实践型内容与大家分享,在星球里的同学可以随时提问,随时提需求,我们都会及时给予回复及给出对应的答复。

登录查看更多
2

相关内容

深度学习目标检测方法及其主流框架综述
专知会员服务
148+阅读 · 2020年6月26日
【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
119+阅读 · 2020年6月26日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
专知会员服务
163+阅读 · 2020年4月21日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
44+阅读 · 2020年4月17日
47.4mAP!最强Anchor-free目标检测网络:SAPD
极市平台
13+阅读 · 2019年12月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
最新Anchor-Free目标检测模型—FoveaBox
PaperWeekly
6+阅读 · 2019年4月29日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
FoveaBox,超越Anchor-Based的检测器
极市平台
10+阅读 · 2019年4月22日
目标检测:Anchor-Free时代
极市平台
42+阅读 · 2019年4月17日
CVPR2019 | FSAF:来自CMU的Single-Shot目标检测算法
极市平台
41+阅读 · 2019年3月8日
三分支网络——目前目标检测性能最佳网络框架
人工智能前沿讲习班
6+阅读 · 2019年3月5日
目标检测论文阅读:DetNet
极市平台
9+阅读 · 2019年1月28日
Arxiv
5+阅读 · 2019年4月8日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
5+阅读 · 2016年12月29日
VIP会员
相关资讯
47.4mAP!最强Anchor-free目标检测网络:SAPD
极市平台
13+阅读 · 2019年12月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
最新Anchor-Free目标检测模型—FoveaBox
PaperWeekly
6+阅读 · 2019年4月29日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
FoveaBox,超越Anchor-Based的检测器
极市平台
10+阅读 · 2019年4月22日
目标检测:Anchor-Free时代
极市平台
42+阅读 · 2019年4月17日
CVPR2019 | FSAF:来自CMU的Single-Shot目标检测算法
极市平台
41+阅读 · 2019年3月8日
三分支网络——目前目标检测性能最佳网络框架
人工智能前沿讲习班
6+阅读 · 2019年3月5日
目标检测论文阅读:DetNet
极市平台
9+阅读 · 2019年1月28日
相关论文
Arxiv
5+阅读 · 2019年4月8日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
5+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员