This tutorial covers a few recent papers in the field of network embedding. Network embedding is a collective term for techniques for mapping graph nodes to vectors of real numbers in a multidimensional space. To be useful, a good embedding should preserve the structure of the graph. The vectors can then be used as input to various network and graph analysis tasks, such as link prediction. The papers discussed develop methods for the online learning of such embeddings, and include DeepWalk, LINE, node2vec, struc2vec and megapath2vec. These new methods and developments in online learning of network embeddings have major applications for the analysis of graphs and networks, including online social networks.
翻译:本指导性文件涵盖网络嵌入领域最近的一些论文。 网络嵌入是多维空间真实数字矢量矢量绘图图形节点技术的集体术语。 要有用的话, 良好的嵌入应该保存图形的结构。 然后, 矢量可以用作各种网络和图表分析任务的投入, 如链接预测。 文件讨论了开发在线学习这种嵌入的方法, 包括DeepWalk、 LINE、 node2vec、 struc2vec 和 兆mbath2vec 。 这些在线学习网络嵌入的新方法和新发展对于分析图表和网络, 包括在线社交网络具有主要应用性 。