这本书提供 访问Spark平台的真实文档和示例,以构建大型企业级机器学习应用程序。

在过去的十年里,机器学习取得了一系列惊人的进步。这些突破正在影响我们的日常生活,并对每个行业产生影响。下一代机器学习Spark提供了Spark和Spark MLlib的介绍,并在标准Spark MLlib库之外,向更强大的第三方机器学习算法和库迈进。在这本书的结尾,你将能够通过许多实际的例子和有洞察力的解释将你的知识应用到现实世界的用例中

  • 介绍机器学习、Spark和Spark MLlib 2.4.x
  • 使用XGBoost4J Spark和LightGBM库在Spark上实现闪电般的快速渐变增强
  • 用Spark的隔离林算法检测异常
  • 使用支持多种语言的Spark NLP和Stanford CoreNLP库
  • 使用Alluxio内存数据加速器for Spark优化ML工作负载
  • 使用GraphX和GraphFrames进行图形分析
  • 利用卷积神经网络进行图像识别
  • 利用Keras框架和Spark分布式深度学习库

这本书是给谁的

数据科学家和机器学习工程师,他们希望将自己的知识提升到一个新的水平,使用Spark和更强大的下一代算法和库,而不是标准Spark MLlib库中提供的;同时也是有抱负的数据科学家和工程师的入门书,他们需要机器学习的入门知识,Spark,SparkMLlib。

成为VIP会员查看完整内容
113

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
54+阅读 · 2020年7月4日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
【干货书】现代数据平台架构,636页pdf
专知会员服务
253+阅读 · 2020年6月15日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
专知会员服务
171+阅读 · 2020年6月4日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
199+阅读 · 2020年2月11日
社区分享 | Spark 玩转 TensorFlow 2.0
TensorFlow
15+阅读 · 2020年3月18日
线性模型已退场,XGBoost时代早已来
全球人工智能
9+阅读 · 2019年4月16日
AI从业者必须了解的决策树指南
AI前线
7+阅读 · 2019年1月14日
LightGBM 大战 XGBoost,谁将夺得桂冠?
AI研习社
7+阅读 · 2018年4月17日
比xgboost强大的LightGBM:调参指南(带贝叶斯优化代码)
数据挖掘入门与实战
23+阅读 · 2018年4月9日
机器学习必知的15大框架
人工智能学家
9+阅读 · 2017年12月6日
【机器学习】推荐13个机器学习框架
产业智能官
8+阅读 · 2017年9月10日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
8+阅读 · 2018年1月19日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年7月4日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
【干货书】现代数据平台架构,636页pdf
专知会员服务
253+阅读 · 2020年6月15日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
专知会员服务
171+阅读 · 2020年6月4日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
199+阅读 · 2020年2月11日
相关资讯
社区分享 | Spark 玩转 TensorFlow 2.0
TensorFlow
15+阅读 · 2020年3月18日
线性模型已退场,XGBoost时代早已来
全球人工智能
9+阅读 · 2019年4月16日
AI从业者必须了解的决策树指南
AI前线
7+阅读 · 2019年1月14日
LightGBM 大战 XGBoost,谁将夺得桂冠?
AI研习社
7+阅读 · 2018年4月17日
比xgboost强大的LightGBM:调参指南(带贝叶斯优化代码)
数据挖掘入门与实战
23+阅读 · 2018年4月9日
机器学习必知的15大框架
人工智能学家
9+阅读 · 2017年12月6日
【机器学习】推荐13个机器学习框架
产业智能官
8+阅读 · 2017年9月10日
微信扫码咨询专知VIP会员