VIP内容

主题: Deep Learning with Python

摘要: 《 Python深度学习》第二版全面介绍了使用Python和强大的Keras库进行的深度学习领域。 由Keras的创建者Google AI研究人员FrançoisChollet撰写,此修订版已更新了新章节,新工具和最新研究中的尖端技术。 读者将通过实际示例和直观的说明来加深理解,这些示例使深度学习的复杂性易于理解。

成为VIP会员查看完整内容
0
67

最新论文

This paper introduces PyGAD, an open-source easy-to-use Python library for building the genetic algorithm. PyGAD supports a wide range of parameters to give the user control over everything in its life cycle. This includes, but is not limited to, population, gene value range, gene data type, parent selection, crossover, and mutation. PyGAD is designed as a general-purpose optimization library that allows the user to customize the fitness function. Its usage consists of 3 main steps: build the fitness function, create an instance of the pygad.GA class, and calling the pygad.GA.run() method. The library supports training deep learning models created either with PyGAD itself or with frameworks like Keras and PyTorch. Given its stable state, PyGAD is also in active development to respond to the user's requested features and enhancement received on GitHub https://github.com/ahmedfgad/GeneticAlgorithmPython. PyGAD comes with documentation https://pygad.readthedocs.io for further details and examples.

0
0
下载
预览
Top