本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
210

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
136

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
155

随着机器学习越来越多地被用于发现模式、进行分析和做出决策——投资于吸引更多的利益相关者加入是至关重要的。这本关于机器学习中的Python项目的书试图做到这一点:为今天和明天的开发人员提供工具,他们可以使用这些工具更好地理解、评估和塑造机器学习,以帮助确保它为我们所有人服务。

如果你还没有Python编程环境,这本书将为你提供一个,然后在“机器学习导论”一章中为你提供一个机器学习的概念理解。接下来是三个Python机器学习项目。它们将帮助你创建一个机器学习分类器,建立一个神经网络来识别手写数字,并通过为Atari构建一个机器人来给你一个深度强化学习的背景知识。

Python机器学习项目

  1. 前言
  2. 设置Python编程环境 3.机器学习入门
  3. 如何用Scikitlearn在Python中构建机器学习分类器
  4. 如何建立基于Tensorflow的神经网络识别手写数字
  5. 深度强化学习的偏差-方差: 如何用OpenAI Gym为Atari构建一个机器人

成为VIP会员查看完整内容
0
95

机器学习已经成为许多商业应用和研究项目中不可或缺的一部分,但这一领域并不仅限于拥有广泛研究团队的大公司。如果您使用Python,即使是初学者,这本书也会教你构建自己的机器学习解决方案的实用方法。今天,有了所有可用的数据,机器学习应用程序只受限于你的想象力。

您将学习使用Python和scikit-learn库创建成功的机器学习应用程序所需的步骤。两位作者安德烈亚斯•穆勒(Andreas Muller)和萨拉•圭多(Sarah Guido)关注的是使用机器学习算法的实践层面,而不是背后的数学。熟悉NumPy和matplotlib库将有助于您从本书获得更多信息。

通过这本书,你会学到 :

  • 机器学习的基本概念和应用
  • 广泛应用的机器学习算法的优缺点
  • 如何表示机器学习处理过的数据,包括关注哪些数据方面
  • 先进的模型评估和参数调整方法
  • 用于链接模型和封装工作流的管道概念
  • 处理文本数据的方法,包括特定于文本的处理技术
  • 提高机器学习和数据科学技能的建议
成为VIP会员查看完整内容
0
93

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
134

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
106

概率图模型是机器学习中的一种技术,它使用图论的概念来简明地表示和最佳地预测数据问题中的值。

图模型为我们提供了在数据中发现复杂模式的技术,广泛应用于语音识别、信息提取、图像分割和基因调控网络建模等领域。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一整章是关于朴素贝叶斯模型和隐马尔可夫模型的。这些模型已经通过实际例子进行了详细的讨论。

你会学到什么

  • 掌握概率论和图论的基本知识
  • 使用马尔可夫网络
  • 实现贝叶斯网络
  • 图模型中的精确推理技术,如变量消除算法
  • 了解图模型中的近似推理技术,如消息传递算法

图模型中的示例算法 通过真实的例子来掌握朴素贝叶斯的细节 使用Python中的各种库部署PGMs 获得隐马尔可夫模型的工作细节与现实世界的例子

详细 概率图模型是机器学习中的一种技术,它使用图论的概念来简洁地表示和最佳地预测数据问题中的值。在现实问题中,往往很难选择合适的图模型和合适的推理算法,这对计算时间和精度有很大的影响。因此,了解这些算法的工作细节是至关重要的。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一个完整的章节专门讨论最广泛使用的网络朴素贝叶斯模型和隐马尔可夫模型(HMMs)。这些模型已经通过实际例子进行了详细的讨论。

风格和方法 一个易于遵循的指南,帮助您理解概率图模型使用简单的例子和大量的代码例子,重点放在更广泛使用的模型。

成为VIP会员查看完整内容
0
138

掌握通过机器学习和深度学习识别和解决复杂问题的基本技能。使用真实世界的例子,利用流行的Python机器学习生态系统,这本书是你学习机器学习的艺术和科学成为一个成功的实践者的完美伴侣。本书中使用的概念、技术、工具、框架和方法将教会您如何成功地思考、设计、构建和执行机器学习系统和项目。

使用Python进行的实际机器学习遵循结构化和全面的三层方法,其中包含了实践示例和代码。

第1部分侧重于理解机器学习的概念和工具。这包括机器学习基础,对算法、技术、概念和应用程序的广泛概述,然后介绍整个Python机器学习生态系统。还包括有用的机器学习工具、库和框架的简要指南。

第2部分详细介绍了标准的机器学习流程,重点介绍了数据处理分析、特征工程和建模。您将学习如何处理、总结和可视化各种形式的数据。特性工程和选择方法将详细介绍真实数据集,然后是模型构建、调优、解释和部署。

第3部分探讨了多个真实世界的案例研究,涵盖了零售、交通、电影、音乐、营销、计算机视觉和金融等不同领域和行业。对于每个案例研究,您将学习各种机器学习技术和方法的应用。动手的例子将帮助您熟悉最先进的机器学习工具和技术,并了解什么算法最适合任何问题。

实用的机器学习与Python将授权您开始解决您自己的问题与机器学习今天!

你将学习:

  • 执行端到端机器学习项目和系统
  • 使用行业标准、开放源码、健壮的机器学习工具和框架实现实践示例
  • 回顾描述机器学习和深度学习在不同领域和行业中的应用的案例研究
  • 广泛应用机器学习模型,包括回归、分类和聚类。
  • 理解和应用深度学习的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

这本书是给谁看的 IT专业人士、分析师、开发人员、数据科学家、工程师、研究生

目录:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

成为VIP会员查看完整内容
0
141

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
126

在六个步骤中学习高级Python 3主题的基础知识,所有这些都是为了让您成为一个有价值的实践者而设计的。这个更新版本的方法基于“六度分离”理论,该理论指出每个人和每件事都是最多六步之遥,并将每个主题分为两部分: 理论概念和使用适当的Python 3包的实际实现。

您将从Python 3编程语言基础、机器学习历史、发展和系统开发框架开始。本文还介绍了一些关键的数据挖掘/分析概念,如探索性分析、特征降维、回归、时间序列预测及其在Scikit-learn中的有效实现。您还将学习常用的模型诊断和调优技术。其中包括最优的类创建概率截止点、方差、偏差、装袋、提升、集成投票、网格搜索、随机搜索、贝叶斯优化和物联网数据降噪技术。

最后,您将回顾先进的文本挖掘技术,推荐系统,神经网络,深度学习,强化学习技术及其实现。本书中提供的所有代码都将以iPython笔记本的形式提供,使您能够尝试这些示例并将其扩展到您的优势。

你将学习

  • 了解机器学习开发和框架
  • 评估模型诊断和机器学习中的调优
  • 检查文本挖掘、自然语言处理(NLP)和推荐系统
  • 复习强化学习和CNN

这本书是给谁看的

Python开发人员、数据工程师和机器学习工程师希望将他们的知识或职业扩展到机器学习领域。

成为VIP会员查看完整内容
0
154
小贴士
相关论文
Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs
Osman Asif Malik,Shashanka Ubaru,Lior Horesh,Misha E. Kilmer,Haim Avron
6+阅读 · 2019年10月16日
Muhan Zhang,Shali Jiang,Zhicheng Cui,Roman Garnett,Yixin Chen
7+阅读 · 2019年5月30日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
9+阅读 · 2019年3月10日
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes,John Healy,James Melville
7+阅读 · 2018年12月6日
Borja Ibarz,Jan Leike,Tobias Pohlen,Geoffrey Irving,Shane Legg,Dario Amodei
4+阅读 · 2018年11月15日
ML-Net: multi-label classification of biomedical texts with deep neural networks
Jingcheng Du,Qingyu Chen,Yifan Peng,Yang Xiang,Cui Tao,Zhiyong Lu
7+阅读 · 2018年11月15日
Marek Rei,Anders Søgaard
3+阅读 · 2018年11月14日
Ivana Balazevic,Carl Allen,Timothy M. Hospedales
5+阅读 · 2018年8月28日
Andreas Groll,Christophe Ley,Gunther Schauberger,Hans Van Eetvelde
3+阅读 · 2018年6月13日
Artem Sevastopolsky,Stepan Drapak,Konstantin Kiselev,Blake M. Snyder,Anastasia Georgievskaya
3+阅读 · 2018年4月30日
Top