In recent years, deep neural models have been widely adopted for text matching tasks, such as question answering and information retrieval, showing improved performance as compared with previous methods. In this paper, we introduce the MatchZoo toolkit that aims to facilitate the designing, comparing and sharing of deep text matching models. Specifically, the toolkit provides a unified data preparation module for different text matching problems, a flexible layer-based model construction process, and a variety of training objectives and evaluation metrics. In addition, the toolkit has implemented two schools of representative deep text matching models, namely representation-focused models and interaction-focused models. Finally, users can easily modify existing models, create and share their own models for text matching in MatchZoo.


翻译:近年来,对文本匹配任务,如问答和信息检索等,广泛采用深层神经模型,表明与以往方法相比,业绩有所改善;本文件介绍MatchZoo工具包,旨在促进深层文本匹配模型的设计、比较和共享;具体地说,该工具包为不同文本匹配问题提供了一个统一的数据编制模块,一个灵活的基于层的模式构建流程,以及各种培训目标和评价指标;此外,该工具包还实施了两套具有代表性的深层文本匹配模型,即注重代表性的模式和注重互动的模式;最后,用户可以很容易地修改现有模式,在MatchZoo创建和共享自己的文本匹配模式。

5
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
重磅发布:基于 PyTorch 的深度文本匹配工具 MatchZoo-py
中国科学院网络数据重点实验室
16+阅读 · 2019年8月26日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
深度文本匹配开源工具(MatchZoo)
中国科学院网络数据重点实验室
7+阅读 · 2017年12月5日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
3+阅读 · 2018年3月21日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
重磅发布:基于 PyTorch 的深度文本匹配工具 MatchZoo-py
中国科学院网络数据重点实验室
16+阅读 · 2019年8月26日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
深度文本匹配开源工具(MatchZoo)
中国科学院网络数据重点实验室
7+阅读 · 2017年12月5日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员