Using pre-trained word embeddings as input layer is a common practice in many natural language processing (NLP) tasks, but it is largely neglected for neural machine translation (NMT). In this paper, we conducted a systematic analysis on the effect of using pre-trained source-side monolingual word embedding in NMT. We compared several strategies, such as fixing or updating the embeddings during NMT training on varying amounts of data, and we also proposed a novel strategy called dual-embedding that blends the fixing and updating strategies. Our results suggest that pre-trained embeddings can be helpful if properly incorporated into NMT, especially when parallel data is limited or additional in-domain monolingual data is readily available.


翻译:将预先培训的嵌入字词作为输入层是许多自然语言处理(NLP)任务的一个常见做法,但在神经机翻译(NMT)中却基本上被忽视。 在本文中,我们系统分析了使用经过培训的源端单语词嵌入NMT的影响。 我们比较了几项战略,例如,在NMT培训期间固定或更新关于不同数量数据的嵌入字词,我们还提出了一项称为双层组合的新战略,将确定和更新战略混合在一起。 我们的结果表明,如果将预先培训的嵌入词适当纳入NMT, 特别是当平行数据有限或可以随时获得其他日常的单语数据时, 会有帮助。

5
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员