https://www.zhuanzhi.ai/paper/3696ec78742419bdaa9c23dce139b3d4

消息传递图神经网络(GNNs)为关系数据提供了强大的建模框架。曾经,现有GNN的表达能力上界取决于1- Weisfeiller -Lehman (1-WL)图同构测试,这意味着gnn无法预测节点聚类系数和最短路径距离,无法区分不同的d-正则图。在这里,我们提出了一类传递消息的GNN,称为身份感知图神经网络(ID- GNNs),具有比1-WL测试更强的表达能力。ID-GNN为现有GNN的局限性提供了一个最小但强大的解决方案。ID-GNN通过在消息传递过程中归纳地考虑节点的身份来扩展现有的GNN体系结构。为了嵌入一个给定的节点,IDGNN首先提取以该节点为中心的自我网络,然后进行轮次异构消息传递,中心节点与自我网络中其他周围节点应用不同的参数集。我们进一步提出了一个简化但更快的ID-GNN版本,它将节点标识信息作为增强节点特征注入。总之,ID-GNN的两个版本代表了消息传递GNN的一般扩展,其中实验表明,在具有挑战性的节点、边缘和图属性预测任务中,将现有的GNN转换为ID-GNN平均可以提高40%的准确率;结点和图分类在基准测试上提高3%精度;在实际链路预测任务提高15%的ROC AUC。此外,与其他特定于任务的图网络相比,ID- GNN表现出了更好的或相当的性能。

成为VIP会员查看完整内容
38

相关内容

AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
【AAAI2021】时间关系建模与自监督的动作分割
专知会员服务
36+阅读 · 2021年1月24日
【AAAI2021】层次推理图神经网络
专知会员服务
69+阅读 · 2020年12月27日
专知会员服务
108+阅读 · 2020年12月22日
专知会员服务
107+阅读 · 2020年12月21日
专知会员服务
46+阅读 · 2020年12月20日
【AAAI2021】 层次图胶囊网络
专知会员服务
83+阅读 · 2020年12月18日
专知会员服务
37+阅读 · 2020年11月24日
专知会员服务
44+阅读 · 2020年9月3日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
图神经网络时代的深度聚类
图与推荐
5+阅读 · 2020年5月16日
ICML2020 图神经网络的预训练
图与推荐
12+阅读 · 2020年4月4日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
【AAAI2021】时间关系建模与自监督的动作分割
专知会员服务
36+阅读 · 2021年1月24日
【AAAI2021】层次推理图神经网络
专知会员服务
69+阅读 · 2020年12月27日
专知会员服务
108+阅读 · 2020年12月22日
专知会员服务
107+阅读 · 2020年12月21日
专知会员服务
46+阅读 · 2020年12月20日
【AAAI2021】 层次图胶囊网络
专知会员服务
83+阅读 · 2020年12月18日
专知会员服务
37+阅读 · 2020年11月24日
专知会员服务
44+阅读 · 2020年9月3日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关论文
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
12+阅读 · 2018年1月28日
微信扫码咨询专知VIP会员