Deep graph infomax. Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm. ICLR 2019.
https://arxiv.org/abs/1809.10341
Link Prediction Based on Graph Neural Networks. Muhan Zhang, Yixin Chen. NeurIPS 2018.
https://arxiv.org/pdf/1802.0969-pdf
SpectralNet: Spectral Clustering using Deep Neural Networks Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri, Yuval Kluger. ICLR 2018.
https://arxiv.org/pdf/180-01587.pdf
Deep Recursive Network Embedding with Regular Equivalence.
Ke Tu, Peng Cui, Xiao Wang, Philip S. Yu, Wenwu Zhu. KDD 2018.
http://cuip.thumedialab.com/papers/NE-RegularEquivalence.pdf
Learning Deep Network Representations with Adversarially Regularized Autoencoders.
Wenchao Yu, Cheng Zheng, Wei Cheng, Charu Aggarwal, Dongjin Song, Bo Zong, Haifeng Chen, Wei Wang. KDD 2018.
http://www.cs.ucsb.edu/~bzong/doc/kdd-18.pdf
Adversarially Regularized Graph Autoencoder for Graph Embedding.
Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang. IJCAI 2018.
https://www.ijcai.org/proceedings/2018/0362.pdf
Mgae: Marginalized graph autoencoder for graph clustering Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, Jing Jiang. CIKM 2017.
https://shiruipan.github.io/pdf/CIKM-17-Wang.pdf
Structural deep network embedding Daixin Wang, Peng Cui, Wenwu Zhu.
https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf
Deep neural networks for learning graph representations. Shaosheng Cao, Wei Lu, Qiongkai Xu. AAAI 2016.
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12423/11715
Variational graph auto-encoders. Thomas N. Kipf, Max Welling. 2016.
https://arxiv.org/pdf/161-07308.pdf
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, HuaiyuWan AAAI 2019.
https://aaai.org/ojs/index.php/AAAI/article/view/3881
Spatio-temporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting. Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, Yan Liu. AAAI 2019.
http://www-scf.usc.edu/~yaguang/papers/aaai19_multi_graph_convolution.pdf
Spatio-Temporal Graph Routing for Skeleton-based Action Recognition. Bin Li, Xi Li, Zhongfei Zhang, Fei Wu. AAAI 2019.
https://www.aaai.org/Papers/AAAI/2019/AAAI-LiBin.6992.pdf
Graph wavenet for deep spatial-temporal graph modeling Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang IJCAI 2019.
https://arxiv.org/abs/1906.00121
Deep multi-view spatial-temporal network for taxi. Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, Zhenhui Li. AAAI 2018.
https://arxiv.org/abs/1802.08714
Spatial temporal graph convolutional networks for skeleton-based action recognition. Sijie Yan, Yuanjun Xiong, Dahua Lin. AAAI 2018.
https://arxiv.org/abs/180-07455
Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu. ICLR 2018.
https://arxiv.org/pdf/1707.01926.pdf
Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Bing Yu, Haoteng Yin, Zhanxing Zhu. IJCAI 2018.
https://arxiv.org/pdf/1709.04875.pdf
Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs.
Rakshit Trivedi, Hanjun Dai, Yichen Wang, Le Song. ICML 2017
https://arxiv.org/pdf/1705.05742.pdf
Structured sequence modeling with graph convolutional recurrent networks. Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, Xavier Bresson. 2016. https://arxiv.org/pdf/1612.07659.pdf
Structural-rnn: Deep learning on spatio-temporal graphs. Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena. CVPR 2016.
https://arxiv.org/abs/151-05298
Graph Element Networks: adaptive, structured computation and memory. Ferran Alet, Adarsh K. Jeewajee, Maria Bauza, Alberto Rodriguez, Tomas Lozano-Perez, Leslie Pack Kaelbling. ICML 2019.
https://arxiv.org/pdf/1904.09019
Graph networks as learnable physics engines for inference and control. Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia. ICML 2018.
https://arxiv.org/pdf/1806.01242.pdf
Discovering objects and their relations from entangled scene representations. David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, Peter Battaglia. ICLR Workshop 2017.
https://arxiv.org/pdf/1702.05068.pdf
A simple neural network module for relational reasoning. Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap. NIPS 2017.
https://arxiv.org/pdf/1706.01427.pdf
Interaction Networks for Learning about Objects, Relations and Physics. Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu. NIPS 2016.
https://arxiv.org/pdf/1612.00222.pdf
Visual Interaction Networks: Learning a Physics Simulator from Video. Nicholas Watters, Andrea Tacchetti, Théophane Weber, Razvan Pascanu, Peter Battaglia, Daniel Zoran. NIPS 2017.
http://papers.nips.cc/paper/7040-visual-interaction-networks-learning-a-physics-simulator-from-video.pdf
Learning Multiagent Communication with Backpropagation. Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus. NIPS 2016.
https://arxiv.org/pdf/1605.07736.pdf
VAIN: Attentional Multi-agent Predictive Modeling. Yedid Hoshen. NIPS 2017
https://arxiv.org/pdf/1706.06122.pdf
Neural Relational Inference for Interacting Systems. Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel. ICML 2018.
https://arxiv.org/pdf/1802.04687.pdf
Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks. Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos. KDD 2019.
https://arxiv.org/pdf/1905.08865
OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang, Bin Shao, Rui Li, Kuansan Wang. KDD 2019.
http://keg.cs.tsinghua.edu.cn/jietang/publications/KDD19-Zhang-et-al-Open_Academic_Graph.pdf
End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion. Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, Bowen Zhou. AAAI 2019.
https://arxiv.org/pdf/181-0444-pdf
Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding. Peifeng Wang, Jialong Han, Chenliang Li, Rong Pan. AAAI 2019.
https://arxiv.org/pdf/181-01399.pdf
Modeling Relational Data with Graph Convolutional Networks. Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. ESWC 2018.
https://arxiv.org/pdf/1703.06103.pdf
Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. EMNLP 2018.
http://www.aclweb.org/anthology/D18-1032
Representation learning for visual-relational knowledge graphs. Daniel Oñoro-Rubio, Mathias Niepert, Alberto García-Durán, Roberto González, Roberto J. López-Sastre. arxiv 2017.
https://arxiv.org/pdf/1709.02314.pdf
Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach. Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, Yuji Matsumoto. IJCAI 2017.
https://arxiv.org/pdf/1706.05674.pdf
Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams. Haoyu Wang, Defu Lian, Yong Ge. CVPR 2018.
http://openaccess.thecvf.com/content_cvpr_2018/papers/Kim_Dynamic_Graph_Generation_CVPR_2018_paper.pdf
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs. Deepak Nathani, Jatin Chauhan, Charu Sharma, Manohar Kaul. ACL 2019.
https://arxiv.org/pdf/1906.01195
Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network. Kun Xu, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu. ACL 2019.
https://128.84.2-199/pdf/1905.11605
STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems. Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King. IJCAI 2019.
https://arxiv.org/pdf/1905.13129.pdf
Binarized Collaborative Filtering with Distilling Graph Convolutional Networks. Haoyu Wang, Defu Lian, Yong Ge. IJCAI 2019.
https://arxiv.org/pdf/1906.01829.pdf
Graph Contextualized Self-Attention Network for Session-based Recommendation. Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, Xiaofang Zhou. IJCAI 2019.
https://www.ijcai.org/proceedings/2019/0547.pdf
Session-based Recommendation with Graph Neural Networks. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan. AAAI 2019.
https://arxiv.org/pdf/181-00855.pdf
Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks. Jin Shang, Mingxuan Sun. AAAI 2019.
https://jshang2.github.io/pubs/geo.pdf
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, Zhongyuan Wang. KDD 2019.
https://arxiv.org/pdf/1905.04413
Exact-K Recommendation via Maximal Clique Optimization. Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu.
KDD 2019.
https://arxiv.org/pdf/1905.07089
KGAT: Knowledge Graph Attention Network for Recommendation. Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua. KDD 2019.
https://arxiv.org/pdf/1905.07854
Knowledge Graph Convolutional Networks for Recommender Systems. Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo. WWW 2019.
https://arxiv.org/pdf/1904.12575.pdf
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen. WWW 2019.
https://arxiv.org/pdf/1903.10433.pdf
Graph Neural Networks for Social Recommendation. Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin. WWW 2019.
https://arxiv.org/pdf/1902.07243.pdf
Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec. KDD 2018.
https://arxiv.org/abs/1806.01973
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. Federico Monti, Michael M. Bronstein, Xavier Bresson. NIPS 2017.
https://arxiv.org/abs/1704.06803
Graph Convolutional Matrix Completion. Rianne van den Berg, Thomas N. Kipf, Max Welling. 2017.
https://arxiv.org/abs/1706.02263
Graph CNNs with Motif and Variable Temporal Block for Skeleton-based Action Recognition. Yu-Hui Wen, Lin Gao, Hongbo Fu, Fang-Lue Zhang, Shihong Xia. AAAI 2019.
https://ecs.victoria.ac.nz/foswiki/pub/Groups/Graphics/RGB-DDataProcessingForRobotics/Graph%20CNNs%20with%20Motif%20and%20Variable%20Temporal%20Block%20for%20Skeleton-based%20Action%20Recognition.pdf
Multi-Label Image Recognition with Graph Convolutional Networks. Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, Yanwen Guo. CVPR 2019.
https://arxiv.org/pdf/1904.03582.pdf
GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain Adaptation. Xinhong Ma, Tianzhu Zhang, Changsheng Xu. CVPR 2019.
http://openaccess.thecvf.com/content_CVPR_2019/papers/Ma_GCAN_Graph_Convolutional_Adversarial_Network_for_Unsupervised_Domain_Adaptation_CVPR_2019_paper.pdf
Mind Your Neighbours: Image Annotation With Metadata Neighbourhood Graph Co-Attention Networks. Junjie Zhang, Qi Wu, Jian Zhang, Chunhua Shen, Jianfeng Lu. CVPR 2019.
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Mind_Your_Neighbours_Image_Annotation_With_Metadata_Neighbourhood_Graph_Co-Attention_CVPR_2019_paper.pdf
Graph Convolutional Label Noise Cleaner: Train a Plug-and-play Action Classifier for Anomaly Detection. Jia-Xing Zhong, Nannan Li, Weijie Kong, Shan Liu, Thomas H. Li, Ge Li. CVPR 2019.
https://arxiv.org/pdf/1903.07256.pdf
Neighbourhood Watch: Referring Expression Comprehension via Language-guided Graph Attention Networks. Peng Wang, Qi Wu, Jiewei Cao, Chunhua Shen, Lianli Gao, Anton van den Hengel. CVPR 2019.
https://arxiv.org/pdf/1812.04794.pdf
Linkage Based Face Clustering via Graph Convolution Network. Zhongdao Wang, Liang Zheng, Yali Li, Shengjin Wang. CVPR 2019.
https://arxiv.org/pdf/1903.11306.pdf
Fast Interactive Object Annotation with Curve-GCN. Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, Sanja Fidler. CVPR 2019.
https://arxiv.org/pdf/1903.06874.pdf
Semantic Graph Convolutional Networks for 3D Human Pose Regression. Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, Dimitris N. Metaxas. CVPR 2019.
https://arxiv.org/pdf/1904.03345.pdf
Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks. N. Dinesh Reddy, Minh Vo, Srinivasa G. Narasimhan. CVPR 2019.
http://www.cs.cmu.edu/~mvo/index_files/Papers/ONet_19.pdf
Graph Attention Convolution for Point Cloud Semantic Segmentation. Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, Jie Shan. CVPR 2019.
http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Graph_Attention_Convolution_for_Point_Cloud_Semantic_Segmentation_CVPR_2019_paper.pdf
An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition. Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, Tieniu Tan. CVPR 2019.
https://arxiv.org/pdf/1902.09130.pdf
Actional-Structural Graph Convolutional Networks for Skeleton-based Action Recognition. Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, Qi Tian. CVPR 2019.
https://arxiv.org/pdf/1904.12659.pdf
Graph Convolutional Tracking. CVPR 2019. Junyu Gao, Tianzhu Zhang, Changsheng Xu.
http://nlpr-web.ia.ac.cn/mmc/homepage/jygao/JY_Gao_files/Conference_Papers/GCT-CVPR2019-GJY.pdf
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. CVPR 2019.
http://openaccess.thecvf.com/content_CVPR_2019/papers/Shi_Two-Stream_Adaptive_Graph_Convolutional_Networks_for_Skeleton-Based_Action_Recognition_CVPR_2019_paper.pdf
Skeleton-Based Action Recognition With Directed Graph Neural Networks. Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. CVPR 2019.
http://openaccess.thecvf.com/content_CVPR_2019/papers/Shi_Skeleton-Based_Action_Recognition_With_Directed_Graph_Neural_Networks_CVPR_2019_paper.pdf
Graph Convolutional Gaussian Processes. Ian Walker, Ben Glocker. ICML 2019.
https://arxiv.org/pdf/1905.05739
Relation Networks for Object Detection. Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, Yichen Wei. CVPR 2018.
http://openaccess.thecvf.com/content_cvpr_2018/papers_backup/Hu_Relation_Networks_for_CVPR_2018_paper.pdf
Learning Region features for Object Detection. Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei, Jifeng Dai. ECCV 2018.
https://arxiv.org/pdf/1803.07066
The More You Know: Using Knowledge Graphs for Image Classification. Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta. CVPR 2017.
https://arxiv.org/pdf/1612.04844.pdf
Graph Neural Networks for Object Localization. Gabriele Monfardini, Vincenzo Di Massa, Franco Scarselli, Marco Gori. ECAI 2006.
http://ebooks.iospress.nl/volumearticle/2775
Learning Human-Object Interactions by Graph Parsing Neural Networks. Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, Song-Chun Zhu. ECCV 2018.
https://arxiv.org/pdf/1808.07962.pdf
Learning Conditioned Graph Structures for Interpretable Visual Question Answering. Will Norcliffe-Brown, Efstathios Vafeias, Sarah Parisot.
NeurIPS 2018.
https://arxiv.org/pdf/1806.07243
Symbolic Graph Reasoning Meets Convolutions. Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing. NeurIPS 2018.
http://papers.nips.cc/paper/7456-symbolic-graph-reasoning-meets-convolutions.pdf
Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering. Medhini Narasimhan, Svetlana Lazebnik, Alexander Schwing. NeurIPS 2018.
http://papers.nips.cc/paper/7531-out-of-the-box-reasoning-with-graph-convolution-nets-for-factual-visual-question-answering.pdf
Structural-RNN: Deep Learning on Spatio-Temporal Graphs. Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena. CVPR 2016.
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jain_Structural-RNN_Deep_Learning_CVPR_2016_paper.pdf
Understanding Kin Relationships in a Photo. Siyu Xia, Ming Shao, Jiebo Luo, Yun Fu. TMM 2012.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6151163
Graph-Structured Representations for Visual Question Answering. Damien Teney, Lingqiao Liu, Anton van den Hengel. CVPR 2017.
https://arxiv.org/pdf/1609.05600.pdf
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. Sijie Yan, Yuanjun Xiong, Dahua Lin. AAAI 2018.
https://arxiv.org/pdf/180-07455.pdf
Dynamic Graph CNN for Learning on Point Clouds. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. CVPR 2018.
https://arxiv.org/pdf/180-07829.pdf
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. CVPR 2018.
https://arxiv.org/pdf/1612.00593.pdf
3D Graph Neural Networks for RGBD Semantic Segmentation. Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, Raquel Urtasun. CVPR 2017.
http://openaccess.thecvf.com/content_ICCV_2017/papers/Qi_3D_Graph_Neural_ICCV_2017_paper.pdf
Iterative Visual Reasoning Beyond Convolutions. Xinlei Chen, Li-Jia Li, Li Fei-Fei, Abhinav Gupta. CVPR 2018.
https://arxiv.org/pdf/1803.11189
Situation Recognition with Graph Neural Networks. Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, Sanja Fidler. ICCV 2017.
https://arxiv.org/pdf/1708.04320
I Know the Relationships: Zero-Shot Action Recognition via Two-Stream Graph Convolutional Networks and Knowledge Graphs. Junyu Gao, Tianzhu Zhang, Changsheng Xu. AAAI 2019.
http://nlpr-web.ia.ac.cn/mmc/homepage/jygao/JY_Gao_files/Conference_Papers/AAAI2019-GJY.pdf
Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks. Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar ACL 2019.
https://arxiv.org/pdf/1809.04283
Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network. Sunil Kumar Sahu, Fenia Christopoulou, Makoto Miwa, Sophia Ananiadou. ACL 2019.
https://arxiv.org/pdf/1906.04684
Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension. Daesik Kim, Seonhoon Kim, Nojun Kwak. ACL 2019.
https://arxiv.org/pdf/181-00232
Dynamically Fused Graph Network for Multi-hop Reasoning. Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu. ACL 2019.
https://arxiv.org/pdf/1905.06933
Joint Type Inference on Entities and Relations via Graph Convolutional Networks. Changzhi Sun, Yeyun Gong, Yuanbin Wu, Ming Gong, Daxing Jiang, Man Lan, Shiliang Sun1, Nan Duan. ACL 2019.
http://www.czsun.site/publications/joint_entrel_gcn.pdf
Attention Guided Graph Convolutional Networks for Relation Extraction. Zhijiang Guo, Yan Zhang, Wei Lu. ACL 2019.
http://www.statnlp.org/wp-content/uploads/2019/06/Attention_Guided_Graph_Convolutional_Networks_for_Relation_Extraction.pdf
GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma. ACL 2019.
https://tsujuifu.github.io/pubs/acl19_graph-rel.pdf
Graph Neural Networks with Generated Parameters for Relation Extraction. Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun. ACL 2019.
https://arxiv.org/pdf/1902.00756
Generating Logical Forms from Graph Representations of Text and Entities. Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, Yasemin Altun. ACL 2019.
https://arxiv.org/pdf/1905.08407
Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing. Ben Bogin, Matt Gardner, Jonathan Berant. ACL 2019.
https://arxiv.org/pdf/1905.06241
Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model. Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu sun. ACL 2019.
https://arxiv.org/pdf/1906.01231
GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification. Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun. ACL 2019.
https://www.aclweb.org/anthology/P19-1085
Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution. Yinchuan Xu, Junlin Yang. ACL 2019.
https://arxiv.org/pdf/1905.08868.pdf
Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks. Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang, Huajun Chen. NAACL 2019.
https://arxiv.org/pdf/1903.01306.pdf
Text Generation from Knowledge Graphs with Graph Transformers. Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, Hannaneh Hajishirzi. NAACL 2019.
https://arxiv.org/pdf/1904.02342.pdf
Question Answering by Reasoning Across Documents with Graph Convolutional Networks. Nicola De Cao, Wilker Aziz, Ivan Titov. NAACL 2019.
https://arxiv.org/pdf/1808.09920.pdf
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering. Yu Cao, Meng Fang, Dacheng Tao. NAACL 2019.
https://arxiv.org/pdf/1904.04969.pdf
GraphIE: A Graph-Based Framework for Information Extraction. Yujie Qian, Enrico Santus, Zhijing Jin, Jiang Guo, Regina Barzilay. NAACL 2019.
https://arxiv.org/pdf/1810.13083.pdf
Graph Convolution for Multimodal Information Extraction from Visually Rich Documents. Xiaojing Liu, Feiyu Gao, Qiong Zhang, Huasha Zhao. NAACL 2019.
https://arxiv.org/pdf/1903.11279.pdf
Abusive Language Detection with Graph Convolutional Networks. Pushkar Mishra, Marco Del Tredici, Helen Yannakoudakis, Ekaterina Shutova. NAACL 2019.
https://arxiv.org/pdf/1904.04073.pdf
Learning Graph Pooling and Hybrid Convolutional Operations for Text Representations. Hongyang Gao, Yongjun Chen, Shuiwang Ji. WWW 2019.
https://arxiv.org/pdf/190-06965.pdf
Graph Convolutional Networks with Argument-Aware Pooling for Event Detection. Thien Huu Nguyen, Ralph Grishman. AAAI 2018.
http://ix.cs.uoregon.edu/~thien/pubs/graphConv.pdf
Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks. Diego Marcheggiani, Joost Bastings, Ivan Titov. NAACL 2018.
http://www.aclweb.org/anthology/N18-2078
Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks. Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, Daniel Gildea. 2018.
https://arxiv.org/abs/1809.02040
Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. Yuhao Zhang, Peng Qi, Christopher D. Manning. EMNLP 2018.
https://arxiv.org/abs/1809.10185
N-ary relation extraction using graph state LSTM. Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea. EMNLP 18.
https://arxiv.org/abs/1808.09101
A Graph-to-Sequence Model for AMR-to-Text Generation. Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea. ACL 2018.
https://arxiv.org/abs/1805.02473
Graph-to-Sequence Learning using Gated Graph Neural Networks. Daniel Beck, Gholamreza Haffari, Trevor Cohn. ACL 2018.
https://arxiv.org/pdf/1806.09835.pdf
Multiple Events Extraction via Attention-based Graph Information Aggregation. Xiao Liu, Zhunchen Luo, Heyan Huang. EMNLP 2018.
https://arxiv.org/pdf/1809.09078.pdf
Recurrent Relational Networks. Rasmus Palm, Ulrich Paquet, Ole Winther. NeurIPS 2018.
http://papers.nips.cc/paper/7597-recurrent-relational-networks.pdf
Learning Graphical State Transitions. Daniel D. Johnson. ICLR 2017.
https://openreview.net/forum?id=HJ0NvFzxl
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. Kai Sheng Tai, Richard Socher, Christopher D. Manning. ACL 2015.
https://www.aclweb.org/anthology/P15-1150
Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. Diego Marcheggiani, Ivan Titov. EMNLP 2017.
https://arxiv.org/abs/1703.04826
Cross-Sentence N-ary Relation Extraction with Graph LSTMs. Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih. TACL.
https://arxiv.org/abs/1708.03743
Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, Khalil Sima'an. EMNLP 2017.
https://arxiv.org/pdf/1704.04675
Semi-supervised User Geolocation via Graph Convolutional Networks. Afshin Rahimi, Trevor Cohn, Timothy Baldwin. ACL 2018.
https://arxiv.org/pdf/1804.08049.pdf
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering. Daniil Sorokin, Iryna Gurevych. COLING 2018.
https://arxiv.org/pdf/1808.04126.pdf
Graph Convolutional Networks for Text Classification. Liang Yao, Chengsheng Mao, Yuan Luo. AAAI 2019.
https://arxiv.org/pdf/1809.05679.pdf
Constructing Narrative Event Evolutionary Graph for Script Event Prediction. Zhongyang Li, Xiao Ding, Ting Liu. IJCAI 2018.
https://arxiv.org/pdf/1805.0508-pdf