Previous work has shown that perturbation analysis in software space can produce candidate computable generative models and uncover possible causal properties from the finite description of an object or system quantifying the algorithmic contribution of each of its elements relative to the whole. One of the challenges for defining emergence is that one observer's prior knowledge may cause a phenomenon to present itself to such observer as emergent while for another as reducible. By formalising the act of observing as mutual perturbations between dynamical systems, we demonstrate that emergence of algorithmic information do depend on the observer's formal knowledge, while robust to other subjective factors, particularly: the choice of the programming language and the measurement method; errors or distortions during the information acquisition; and the informational cost of processing. This is called observer-dependent emergence (ODE). In addition, we demonstrate that the unbounded and fast increase of emergent algorithmic information implies asymptotically observer-independent emergence (AOIE). Unlike ODE, AOIE is a type of emergence for which emergent phenomena will remain considered to be emergent for every formal theory that any observer might devise. We demonstrate the existence of an evolutionary model that displays the diachronic variant of AOIE and a network model that displays the holistic variant of AOIE. Our results show that, restricted to the context of finite discrete deterministic dynamical systems, computable systems, and irreducible information content measures, AOIE is the strongest form of emergence that formal theories can attain.
翻译:先前的工作表明,软件空间的扰动分析可以产生候选可比较的遗传模型,并发现从一个物体或系统的有限描述中可能存在的因果特性,该描述量化了每个元素相对于整体的算法贡献。 确定出现时遇到的挑战之一是,一位观察员先前的知识可能导致一种现象,向作为新兴的观察者展示自己,而另一个作为可减少的观察者展示自己。通过将观测行为正规化为动态系统之间的相互扰动,我们表明,算法信息的出现取决于观察员的正式知识,而对其他主观因素而言则是强有力的:程序语言的选择和测量方法;信息获取过程中的错误或扭曲;以及处理的信息成本。这被称为观察员自发的出现(ODE)。此外,我们证明,未受限制和快速增长的逻辑信息信息意味着,作为动态系统之间相互扰动的出现(AOIE)。与ODE不同的是,对于任何观察者可能设计的每一种正式理论而言,都认为新出现的一种形式,即:编程语言和测量方法的错误或扭曲;我们展示了AIEO的变式模型的变式模型,可以显示AIEO的变式的变式模型。