Unlike the six basic emotions of happiness, sadness, fear, anger, disgust and surprise, modelling and predicting dimensional affect in terms of valence (positivity - negativity) and arousal (intensity) has proven to be more flexible, applicable and useful for naturalistic and real-world settings. In this paper, we aim to infer user facial affect when the user is engaged in multiple work-like tasks under varying difficulty levels (baseline, easy, hard and stressful conditions), including (i) an office-like setting where they undertake a task that is less physically demanding but requires greater mental strain; (ii) an assembly-line-like setting that requires the usage of fine motor skills; and (iii) an office-like setting representing teleworking and teleconferencing. In line with this aim, we first design a study with different conditions and gather multimodal data from 12 subjects. We then perform several experiments with various machine learning models and find that: (i) the display and prediction of facial affect vary from non-working to working settings; (ii) prediction capability can be boosted by using datasets captured in a work-like context; and (iii) segment-level (spectral representation) information is crucial in improving the facial affect prediction.


翻译:与幸福、悲哀、恐惧、恐惧、愤怒、愤怒、厌恶和惊讶等六种基本情感不同的是,幸福、悲伤、恐惧、恐惧、愤怒、愤怒、厌恶和惊讶等六种基本情感不同,建模和预测维度在价值(空间-负负负负)和振奋(强烈)方面的影响已证明更加灵活、适用和对自然和现实世界环境有用。在本文件中,我们的目标是推断用户面部在用户在不同困难水平(基线、容易、困难和紧张条件)下从事多种类似工作时会受到影响,包括:(一) 办公室式环境,他们从事的体力要求较低,但需要更大的精神压力;(二) 组装线环境,需要使用精细的运动技能;(三) 代表远程工作与远程会议的办公室式环境。根据这一目标,我们首先设计一个条件不同的研究,从12个主题收集多式联运数据。然后,我们用各种机器学习模型进行若干试验,发现:(一) 面部面部的显示和预测影响从非工作到工作环境;(二) 预测能力,可以通过在像工作时段背景中采集的数据设置来提高预测能力。

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
因果推断,Causal Inference:The Mixtape
专知会员服务
104+阅读 · 2021年8月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
1+阅读 · 2022年1月25日
Arxiv
16+阅读 · 2021年7月18日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
因果推断,Causal Inference:The Mixtape
专知会员服务
104+阅读 · 2021年8月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员