We examine the tuning of cooperative behavior in repeated multi-agent games using an analytically tractable, continuous-time, nonlinear model of opinion dynamics. Each modeled agent updates its real-valued opinion about each available strategy in response to payoffs and other agent opinions, as observed over a network. We show how the model provides a principled and systematic means to investigate behavior of agents that select strategies using rationality and reciprocity, key features of human decision-making in social dilemmas. For two-strategy games, we use bifurcation analysis to prove conditions for the bistability of two equilibria and conditions for the first (second) equilibrium to reflect all agents favoring the first (second) strategy. We prove how model parameters, e.g., level of attention to opinions of others (reciprocity), network structure, and payoffs, influence dynamics and, notably, the size of the region of attraction to each stable equilibrium. We provide insights by examining the tuning of the bistability of mutual cooperation and mutual defection and their regions of attraction for the repeated prisoner's dilemma and the repeated multi-agent public goods game. Our results generalize to games with more strategies, heterogeneity, and additional feedback dynamics, such as those designed to elicit cooperation.
翻译:我们用分析性、连续时间、非线性的意见动态模型来检查反复多试剂游戏中合作行为调整情况。每个模型代理商都更新了自己在网络观测到的对报酬和其他代理意见的反应方面对每项现有战略的实际价值意见。我们展示了模型如何提供原则性和系统性手段,调查利用合理性和互惠、人类决策在社会困境中的主要特点、选择战略的代理商的行为。关于两战略游戏,我们使用双向分析来证明两种平衡和第一(第二)平衡条件的可均匀性的条件,以反映所有有利于第一个(第二)战略的代理商。我们证明模型参数是如何得到重视的,例如对他人意见的注意程度(互惠性)、网络结构、报酬、影响动态,特别是吸引每种稳定平衡的区域的大小。我们通过研究如何调整相互合作和相互叛逆性及其吸引囚犯反复陷入困境和反复多试剂公共货物的地区的区域,来提供深刻的见解。我们证明模型参数,例如,对他人意见的注意程度、网络结构和报酬、影响动态,特别是吸引每种稳定平衡的区域的大小。我们通过研究如何调整相互合作和相互叛逆性及其区域吸引囚犯的吸引反复陷入困境和反复多试变的游戏,从而取得更多的战略的结果。我们把更多的游戏,把更多的运动变成为更多的动力。我们所设计了更多的游戏。