In this work, we devise robust and efficient learning protocols for orchestrating a Federated Learning (FL) process for the Federated Tumor Segmentation Challenge (FeTS 2022). Enabling FL for FeTS setup is challenging mainly due to data heterogeneity among collaborators and communication cost of training. To tackle these challenges, we propose Robust Learning Protocol (RoLePRO) which is a combination of server-side adaptive optimisation (e.g., server-side Adam) and judicious parameter (weights) aggregation schemes (e.g., adaptive weighted aggregation). RoLePRO takes a two-phase approach, where the first phase consists of vanilla Federated Averaging, while the second phase consists of a judicious aggregation scheme that uses a sophisticated reweighting, all in the presence of an adaptive optimisation algorithm at the server. We draw insights from extensive experimentation to tune learning rates for the two phases.
翻译:在这项工作中,我们为联邦成人分块挑战(Fets 2022)的联邦学习(FL)进程设计了强有力和有效的学习程序。帮助FL建立FTS具有挑战性,主要是因为合作者之间数据差异以及培训的通信成本。为了应对这些挑战,我们提议Robust学习协议(ROPRO),这是服务器-方适应性优化(例如,服务器-端亚当)和明智参数(重量)集合(例如,适应性加权汇总)计划(例如,适应性加权汇总)的结合。ROLPRO采取两阶段方法,第一阶段由香草联邦veraging组成,而第二阶段则包括一个明智的汇总计划,利用复杂的再加权,所有这一切都是在服务器上采用适应性优化算法。我们从广泛的实验中汲取了见解,以调整两个阶段的学习率。