Federated Learning (FL) is a communication-efficient and privacy-preserving distributed machine learning framework that has gained a significant amount of research attention recently. Despite the different forms of FL algorithms (e.g., synchronous FL, asynchronous FL) and the underlying optimization methods, nearly all existing works implicitly assumed the existence of a communication infrastructure that facilitates the direct communication between the server and the clients for the model data exchange. This assumption, however, does not hold in many real-world applications that can benefit from distributed learning but lack a proper communication infrastructure (e.g., smart sensing in remote areas). In this paper, we propose a novel FL framework, named FedEx (short for FL via Model Express Delivery), that utilizes mobile transporters (e.g., Unmanned Aerial Vehicles) to establish indirect communication channels between the server and the clients. Two algorithms, called FedEx-Sync and FedEx-Async, are developed depending on whether the transporters adopt a synchronized or an asynchronized schedule. Even though the indirect communications introduce heterogeneous delays to clients for both the global model dissemination and the local model collection, we prove the convergence of both versions of FedEx. The convergence analysis subsequently sheds lights on how to assign clients to different transporters and design the routes among the clients. The performance of FedEx is evaluated through experiments in a simulated network on two public datasets.


翻译:联邦学习联合会(FL)是一个通信高效和隐私保护的分布式机器学习框架,最近引起了大量的研究关注。尽管有不同形式的FL算法(如同步FL、非同步FL、非同步FL)和基本优化方法,几乎所有现有工程都暗含地假定存在通信基础设施,便利服务器和客户之间为数据交换模式直接通信。然而,这一假设在许多现实世界应用程序中并不存在,这些应用程序可受益于分布式学习,但缺乏适当的模拟通信基础设施(如偏远地区的智能感测 ) 。在本文件中,我们提出一个新的FL框架,名为FDEx(通过模式快递对FL来说很短),利用移动运输工具(如无人驾驶航空飞行器)建立服务器和客户之间的间接通信渠道。两种算法,称为FedEx-Sync和FedEx-Ex-Async,是根据运输公司是否采用同步或同步时间表开发的。尽管间接通信给客户引入了混合延迟的FedEx框架框架框架框架框架框架框架框架,但随后又向客户发送了不同版本的版本的版本的版本的数据,通过Fed Ex 向客户发送格式的版本的版本的版本的版本的数据分析。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月10日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员