An emergent challenge in geriatric care is improving the quality of care, which requires insight from stakeholders. Qualitative methods offer detailed insights, but they can be biased and have limited generalizability, while quantitative methods may miss nuances. Network-based approaches, such as quantitative ethnography (QE), can bridge this methodological gap. By leveraging the strengths of both methods, QE provides profound insights into need finding interviews. In this paper, to better understand geriatric care attitudes, we interviewed ten nursing assistants, used QE to analyze the data, and compared their daily activities in real life with training experiences. A two-sample t-test with a large effect size (Cohen's d=1.63) indicated a significant difference between real-life and training activities. The findings suggested incorporating more empathetic training scenarios into the future design of our geriatric care simulation. The results have implications for human-computer interaction and human factors. This is illustrated by presenting an example of using QE to analyze expert interviews with nursing assistants as caregivers to inform subsequent design processes.
翻译:暂无翻译