Differential Privacy protects individuals' data when statistical queries are published from aggregated databases: applying "obfuscating" mechanisms to the query results makes the released information less specific but, unavoidably, also decreases its utility. Yet it has been shown that for discrete data (e.g. counting queries), a mandated degree of privacy and a reasonable interpretation of loss of utility, the Geometric obfuscating mechanism is optimal: it loses as little utility as possible. For continuous query results however (e.g. real numbers) the optimality result does not hold. Our contribution here is to show that optimality is regained by using the Laplace mechanism for the obfuscation. The technical apparatus involved includes the earlier discrete result by Ghosh et al., recent work on abstract channels and their geometric representation as hyper-distributions, and the dual interpretations of distance between distributions provided by the Kantorovich-Rubinstein Theorem.


翻译:当从综合数据库公布统计查询时,不同的隐私保护个人的数据:在查询结果中应用“模糊”机制,使得发布的信息不那么具体,但不可避免地会降低其效用。然而,已经表明,对于离散数据(例如计数查询)、规定的隐私程度和对效用损失的合理解释,几何模糊机制是最佳的:尽可能少失去效用。然而,对于连续查询的结果(例如实际数字),最佳性结果是站不住脚的。我们在这里的贡献是表明,通过使用Laplace机制进行混淆,可以重新取得最佳性。所涉及的技术设备包括Ghosh等人的早期离散结果、最近关于抽象渠道的工作及其几何表现为超分布,以及Kantorovich-Rubinstein Theorem提供的分布距离的双重解释。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
37+阅读 · 2021年6月6日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
88+阅读 · 2019年10月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
37+阅读 · 2021年6月6日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
88+阅读 · 2019年10月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员