We present a framework that allows for the non-asymptotic study of the $2$-Wasserstein distance between the invariant distribution of an ergodic stochastic differential equation and the distribution of its numerical approximation in the strongly log-concave case. This allows us to study in a unified way a number of different integrators proposed in the literature for the overdamped and underdamped Langevin dynamics. In addition, we analyse a novel splitting method for the underdamped Langevin dynamics which only requires one gradient evaluation per time step. Under an additional smoothness assumption on a $d$--dimensional strongly log-concave distribution with condition number $\kappa$, the algorithm is shown to produce with an $\mathcal{O}\big(\kappa^{5/4} d^{1/4}\epsilon^{-1/2} \big)$ complexity samples from a distribution that, in Wasserstein distance, is at most $\epsilon>0$ away from the target distribution.
翻译:我们提出了一个框架,允许对二元瓦瑟斯坦(Wasserstein)平方程式的不定分布与其在强烈对数组合中数值近似值的分布之间,对二元瓦瑟斯坦(Wasserstein)的距离进行非抽查研究。这使我们能够以统一的方式研究文献中为高压和低压兰格文动态提议的若干不同的集成者。此外,我们分析了一种新颖的分解方法,用于未加标注的朗格文动态,每步只需要一次梯度评估。在以$\kapa$作为条件的美元维度强烈对焦方程式分布的额外平稳假设下,算法显示以$mathcal{O ⁇ big(\kappa ⁇ 5/4} d ⁇ /4 ⁇ ⁇ epsilon ⁇ -1/2}\ big) 生产一个分布的复杂样本,在瓦瑟斯坦距离下,该分布的频率最高为$\epslon>0美元。