In machine learning, differential privacy and federated learning concepts are gaining more and more importance in an increasingly interconnected world. While the former refers to the sharing of private data characterized by strict security rules to protect individual privacy, the latter refers to distributed learning techniques in which a central server exchanges information with different clients for machine learning purposes. In recent years, many studies have shown the possibility of bypassing the privacy shields of these systems and exploiting the vulnerabilities of machine learning models, making them leak the information with which they have been trained. In this work, we present the 3DGL framework, an alternative to the current federated learning paradigms. Its goal is to share generative models with high levels of $\varepsilon$-differential privacy. In addition, we propose DDP-$\beta$VAE, a deep generative model capable of generating synthetic data with high levels of utility and safety for the individual. We evaluate the 3DGL framework based on DDP-$\beta$VAE, showing how the overall system is resilient to the principal attacks in federated learning and improves the performance of distributed learning algorithms.


翻译:在日益相互关联的世界中,在机器学习中,不同的隐私和联谊学习概念越来越重要,前者是指分享以严格的安全规则为特点的私人数据以保护个人隐私,后者则是指为机器学习目的与不同客户进行中央服务器信息交流的分布式学习技术;近年来,许多研究表明,有可能绕过这些系统的隐私屏蔽,利用机器学习模式的脆弱性,使它们泄露所培训的信息;在这项工作中,我们介绍了3DGL框架,这是目前联合学习模式的替代方案;目标是分享高水平的瓦雷普西隆-差异隐私的基因模型;此外,我们提议DDP-$\beta$VAE,这是一个能够产生具有较高效用和人身安全的合成数据的深层基因模型;我们根据DDP-$\beta$VAE对3DGL框架进行了评估,显示整个系统如何适应在联合学习中的主要攻击,并改进了分布式学习算法的绩效。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
10+阅读 · 2021年3月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员