This paper deals with the generalized spectrum of continuously invertible linear operators defined on infinite dimensional Hilbert spaces. More precisely, we consider two bounded, coercive, and self-adjoint operators $\bc{A, B}: V\mapsto V^{\#}$, where $V^{\#}$ denotes the dual of $V$, and investigate the conditions under which the whole spectrum of $\bc{B}^{-1}\bc{A}:V\mapsto V$ can be approximated to an arbitrary accuracy by the eigenvalues of the finite dimensional discretization $\bc{B}_n^{-1}\bc{A}_n$. Since $\bc{B}^{-1}\bc{A}$ is continuously invertible, such an investigation cannot use the concept of uniform (normwise) convergence, and it relies instead on the pointwise (strong) convergence of $\bc{B}_n^{-1}\bc{A}_n$ to $\bc{B}^{-1}\bc{A}$. The paper is motivated by operator preconditioning which is employed in the numerical solution of boundary value problems. In this context, $\bc{A}, \bc{B}: H_0^1(\Omega) \mapsto H^{-1}(\Omega)$ are the standard integral/functional representations of the differential operators $ -\nabla \cdot (k(x)\nabla u)$ and $-\nabla \cdot (g(x)\nabla u)$, respectively, and $k(x)$ and $g(x)$ are scalar coefficient functions. The investigated question differs from the eigenvalue problem studied in the numerical PDE literature which is based on the approximation of the eigenvalues within the framework of compact operators. This work follows the path started by the two recent papers published in [SIAM J. Numer. Anal., 57 (2019), pp.~1369-1394 and 58 (2020), pp.~2193-2211] and addresses one of the open questions formulated at the end of the second paper.
翻译:本文涉及在无限维度 Hilbert 空间上定义的连续可见线性操作员的广度 。 更准确地说, 我们认为两个约束性、 强制性和自联操作员 $\ bc{ A, B} : V\ mapsto V ⁇ $, 其中美元代表了 $V$ 的双倍美元, 并且调查整个 $\ b{ B\\\\ -1\ { b} : V\ mpsto V$ 的宽度, 在无限维度的维基值值中 。 V\ mpsto Vical 范围中, 由 $\ b\\\ { m\ lic} 直立面值 $\ b=_ 美元, 直立面由操作员 直径=_ Oxxxx% b 的直径解算法, 直径解算法中, 直径的直径为 直径- 直径直径解算法, 直径的直径解算法, 此直径直径直径解, 直径直径直径直径, 此直径直径直径, 此解, 此直径解, 直径, 此直径解, 直直直直直直直的直直直, 直, 直, 直, 直径直路径直, 直, 直, 直路径解, 直, 直, 直, 直, 直径解, 直径, 直径直, 直径, 直径, 直径直径, 直径, 直径, 直径直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直, 直,, 直径, 直径, 直径, 直径直径直径, 直径,, 直径, 直, 直, 直