In this paper, we focus on the nonlinear least squares: $\mbox{min}_{\mathbf{x} \in \mathbb{H}^d}\| |A\mathbf{x}|-\mathbf{b}\|$ where $A\in \mathbb{H}^{m\times d}$, $\mathbf{b} \in \mathbb{R}^m$ with $\mathbb{H} \in \{\mathbb{R},\mathbb{C} \}$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $\mathbf{b}=|A\mathbf{x}_0|$ for some $\mathbf{x}_0\in \mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $\mathbf{b} \neq |A\mathbf{x}_0| $ for any $\mathbf{x}_0\in \mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $A\in \mathbb{H}^{m \times d}$ there always exists a vector $\mathbf{b} \in \mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $\mathbf{b}$ are negligible, namely, if $\mathbf{b} \in \mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $\mathbf{b}$ to any convex set then it is stable.
翻译:在本文中, 我们聚焦于非线性最小方 : $\mbox{ min{ mathb{ x} 在\ mathb{ H\\\ b} 中 $; ${mbox{ min{ mathb{ x} 美元; 在\ mbb{ 中, 在\ mbbb{ 中, 在\ mathb{ x} 中, 以 mathb{ x} 美元计 ; 在\ mathb{ h} 中, 以 math{ { b} 中, 以 mab} 以 美元计, 以 mab} 以 美元计, 以 mab} 以 美元计 。 以 ormab} 以 美元计, 以 以 rentfb} 立下 。 以 r\\\\\\\\ 美元计, 任何 以 以 rxb=x=x=n 解决方案的特性和稳定性 。 但是, 以 以 美元表示 美元=xxxxxxxxxxxxxxxxxx= 。 。 立 。