We present a convergent and constraint-preserving numerical discretization of a mathematical model for the dynamics of a liquid crystal subjected to an electric field. This model can be derived from the Oseen-Frank director field theory, assuming that the dynamics of the electric field are governed by the electrostatics equations with a suitable constitutive relation for the electric displacement field that describes the coupling with the liquid crystal director field. The resulting system of partial differential equations consists of an elliptic equation that is coupled to the wave map equations through a quadratic source term. We show that the discretization preserves the unit length constraint of the director field, is energy-stable and convergent. In numerical experiments, we show that the method is stable even when singularities develop. Moreover, predictions about the alignment of the director field with the electric field are confirmed.
翻译:我们为受电场影响的液体晶体的动态提供了一个数学模型的集合和限制数字分解。 这个模型可以来自Oseen-Frank董事场理论,假设电场的动态受电静态方程式的调节,该方程式与描述与液体晶体导演场连接的电离位场具有适当的组成关系。由此产生的局部差分方程式系统由椭圆方程式组成,该方程式与波形地图方程式通过一个四边形源术语结合。我们表明离异保留了导演场的单位长度限制,是能量稳定且趋同的。在数字实验中,我们显示即使在奇数发展时,该方法也是稳定的。此外,关于导演场与电场的匹配的预测也得到了确认。