This paper addresses the approximation of fractional harmonic maps. Besides a unit-length constraint, one has to tackle the difficulty of nonlocality. We establish weak compactness results for critical points of the fractional Dirichlet energy on unit-length vector fields. We devise and analyze numerical methods for the approximation of various partial differential equations related to fractional harmonic maps. The compactness results imply the convergence of numerical approximations. Numerical examples on spin chain dynamics and point defects are presented to demonstrate the effectiveness of the proposed methods.
翻译:本文讨论分数调和图的近似值。 除了单位长度限制外, 还必须解决非地点性的困难。 我们为单位长度矢量字段的分分解能量的临界点确定薄弱的紧凑性结果。 我们设计并分析与分数调和图有关的各种部分差分方程的近似值。 缩和结果意味着数字近似值的趋近。 提供了旋转链动态和点缺陷的数字示例, 以证明拟议方法的有效性 。