Shared-nothing architecture has been widely adopted in various commercial distributed RDBMSs. Thanks to the architecture, query can be processed in parallel and accelerated by scaling up the cluster horizontally on demand. In spite of that, load balancing has been a challenging issue in all distributed RDBMSs, including shared-nothing ones, which suffers much from skewed data distribution. In this work, we focus on one of the representative operator, namely Hash Join, and investigate how skewness among the nodes of a cluster will affect the load balance and eventual efficiency of an arbitrary query in shared-nothing RDBMSs. We found that existing Distributed Hash Join (Dist-HJ) solutions may not provide satisfactory performance when a value is skewed in both the probe and build tables. To address that, we propose a novel Dist-HJ solution, namely Partition and Replication (PnR). Although PnR provide the best efficiency in some skewness scenario, our exhaustive experiments over a group of shared-nothing RDBMSs show that there is not a single Dist-HJ solution that wins in all (data skew) scenarios. To this end, we further propose a self-adaptive Dist-HJ solution with a builtin sub-operator cost model that dynamically select the best Dist-HJ implementation strategy at runtime according to the data skew of the target query. We implement the solution in our commercial shared-nothing RDBMSs, namely KaiwuDB (former name ZNBase) and empirical study justifies that the self-adaptive model achieves the best performance comparing to a series of solution adopted in many existing RDBMSs.


翻译:在各种商业分布式的 RDBMS 中广泛采用了共享架构。 由于这个架构, 查询可以平行处理, 并通过按需求横向扩大组群来加速。 尽管如此, 在所有分布式的 RDBMS 中, 包括共享- 无共享的系统中, 包括共享- 无共享的系统, 都因数据分布偏斜而有很大问题。 在这项工作中, 我们集中关注一个具有代表性的操作者之一, 即 Hash joint, 并调查集群节点的偏差将如何影响共享的 RDBMS 中任意查询的负平衡和最终效率。 我们发现, 现有的 分配式 HS- 共享的 Hash 联合( Dist- HJ) 解决方案在探测和构建表格中都存在一个挑战性的问题, 包括共享- 无共享- 共享- 共享- 共享- 共享- RDBMS 的 解决方案。 为了解决这个问题, 我们提议在动态- 运行式的 RDB- RDMS 模式中采用最佳- dead- droad 模式。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员