In this paper, we utilized generative models, and reformulate it for problems in molecular dynamics (MD) simulation, by introducing an MD potential energy component to our generative model. By incorporating potential energy as calculated from TorchMD into a conditional generative framework, we attempt to construct a low-potential energy route of transformation between the helix~$\rightarrow$~coil structures of a protein. We show how to add an additional loss function to conditional generative models, motivated by potential energy of molecular configurations, and also present an optimization technique for such an augmented loss function. Our results show the benefit of this additional loss term on synthesizing realistic molecular trajectories.
翻译:在本文中,我们使用基因模型,并将它重新用于分子动态模拟(MD)中的问题,方法是在我们的基因模型中引入一个MD潜在能量组成部分。通过将从TirchMD计算出来的潜在能量纳入一个有条件的基因框架,我们试图在蛋白质的螺旋-$\rightrowlo$~焦土结构之间构建一个低潜能能量转换路线。我们展示了如何在有条件的基因模型中添加额外的损失功能,其动机是分子配置的潜在能量,并为这种扩大的损失功能提供一种优化技术。我们的结果显示了这一额外损失术语在合成现实分子轨迹方面的好处。