We study the problem of multi-agent control of a dynamical system with known dynamics and adversarial disturbances. Our study focuses on optimal control without centralized precomputed policies, but rather with adaptive control policies for the different agents that are only equipped with a stabilizing controller. We give a reduction from any (standard) regret minimizing control method to a distributed algorithm. The reduction guarantees that the resulting distributed algorithm has low regret relative to the optimal precomputed joint policy. Our methodology involves generalizing online convex optimization to a multi-agent setting and applying recent tools from nonstochastic control derived for a single agent. We empirically evaluate our method on a model of an overactuated aircraft. We show that the distributed method is robust to failure and to adversarial perturbations in the dynamics.
翻译:我们研究的是具有已知动态和对抗性扰动的动态系统多试剂控制问题。我们的研究重点是在没有集中的预先预测政策的情况下实现最佳控制,而是对仅配备稳定控制器的不同代理器采取适应性控制政策。我们从任何(标准)最遗憾最小化控制方法到分布式算法都给予减少。这种减少保证所得出的分布式算法相对于最佳预先预测的联合政策来说,没有多大遗憾。我们的方法是将在线二次曲线优化推广到多试剂设置,并应用从单一代理器的非随机控制中得出的最新工具。我们用经验评估了我们关于超动航空器模型的方法。我们表明,分布式方法对失败和动态中的对抗性扰动非常有力。