Coarse-graining (CG) of molecular simulations simplifies the particle representation by grouping selected atoms into pseudo-beads and therefore drastically accelerates simulation. However, such CG procedure induces information losses, which makes accurate backmapping, i.e., restoring fine-grained (FG) coordinates from CG coordinates, a long-standing challenge. Inspired by the recent progress in generative models and equivariant networks, we propose a novel model that rigorously embeds the vital probabilistic nature and geometric consistency requirements of the backmapping transformation. Our model encodes the FG uncertainties into an invariant latent space and decodes them back to FG geometries via equivariant convolutions. To standardize the evaluation of this domain, we further provide three comprehensive benchmarks based on molecular dynamics trajectories. Extensive experiments show that our approach always recovers more realistic structures and outperforms existing data-driven methods with a significant margin.
翻译:分子模拟的粗微测重(CG)通过将选定的原子分组成假比喻,从而简化粒子的表示方式,从而大大加速模拟。然而,这种CG程序导致信息丢失,从而精确地进行回映,即从CG坐标上恢复精微测重坐标(FG),这是一项长期挑战。在基因模型和等同网络最近进展的启发下,我们提出了一个新颖的模式,严格嵌入回映转换的关键概率性质和几何一致性要求。我们的模型将FG不确定性编码成一个变化不定的空间,并通过等变变变变变变变变变变变将它们解码回FG的地理特征。为了对这个领域的评价进行标准化,我们进一步提供了基于分子动态轨迹的三项全面基准。广泛的实验表明,我们的方法总是恢复更现实的结构,并大大超越了现有的数据驱动方法。