Disease classification relying solely on imaging data attracts great interest in medical image analysis. Current models could be further improved, however, by also employing Electronic Health Records (EHRs), which contain rich information on patients and findings from clinicians. It is challenging to incorporate this information into disease classification due to the high reliance on clinician input in EHRs, limiting the possibility for automated diagnosis. In this paper, we propose \textit{variational knowledge distillation} (VKD), which is a new probabilistic inference framework for disease classification based on X-rays that leverages knowledge from EHRs. Specifically, we introduce a conditional latent variable model, where we infer the latent representation of the X-ray image with the variational posterior conditioning on the associated EHR text. By doing so, the model acquires the ability to extract the visual features relevant to the disease during learning and can therefore perform more accurate classification for unseen patients at inference based solely on their X-ray scans. We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs. The results show that the proposed variational knowledge distillation can consistently improve the performance of medical image classification and significantly surpasses current methods.


翻译:仅依靠成像数据的疾病分类吸引了对医学图像分析的极大兴趣。但是,目前的模型还可以通过采用包含关于病人和临床医生发现情况的丰富信息的电子健康记录(EHRs)来进一步改进。由于在EHRs中高度依赖临床投入,因此将这一信息纳入疾病分类具有挑战性,限制了自动诊断的可能性。在本文件中,我们提议了\textit{ varitional point squining} (VKD),这是基于X光的疾病分类的一个新的概率推论框架,它利用了EHRs的知识。具体地说,我们采用了一个有条件的潜伏变异模型,我们通过该模型将X光图像与相关EHR文本的变异后视镜调节条件的潜在的X射线图像的显示纳入疾病分类。通过这样做,模型获得了在学习期间提取与该疾病相关的视觉特征的能力,因此能够仅仅根据X光扫描结果对隐蔽病人进行更精确的推断。我们用三个公共基准数据集与配对X光图像和EHRs 的模拟方法证明了我们的方法的有效性。我们采用了一个有条件的隐隐隐隐隐隐性潜变量,从而能够持续地改进目前医学图像的成绩。结果,从而显示了拟议的变异性。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年3月3日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员