Curved refractive objects are common in the human environment, and have a complex visual appearance that can cause robotic vision algorithms to fail. Light-field cameras allow us to address this challenge by capturing the view-dependent appearance of such objects in a single exposure. We propose a novel image feature for light fields that detects and describes the patterns of light refracted through curved transparent objects. We derive characteristic points based on these features allowing them to be used in place of conventional 2D features. Using our features, we demonstrate improved structure-from-motion performance in challenging scenes containing refractive objects, including quantitative evaluations that show improved camera pose estimates and 3D reconstructions. Additionally, our methods converge 15-35% more frequently than the state-of-the-art. Our method is a critical step towards allowing robots to operate around refractive objects, with applications in manufacturing, quality assurance, pick-and-place, and domestic robots working with acrylic, glass and other transparent materials.
翻译:曲线折射物体在人类环境中很常见,具有复杂的视觉外观,可能导致机器人视觉算法失败。 光场照相机使我们能够通过在一次曝光中捕捉到这些物体的视貌外观来应对这一挑战。 我们为光场提出了一个新的图像特征,用于探测和描述通过曲线透明天体而分红的光场模式。 我们根据这些特征得出特征点,使其能够取代常规的 2D 特征。 我们利用我们的特征,在含有反光物体的富有挑战性的场景中,展示出更好的结构-自动性表现,包括量化评估,显示摄影机的改进构成了估计值和3D 重建值。 此外,我们的方法比最新工艺更频繁地集中15-35%。 我们的方法是一个关键步骤,让机器人在转折物体周围操作,在制造、质量保证、选址和位置上应用,以及使用丙烯、玻璃和其他透明材料的家机器人。