Estimating the precise location of a camera using visual localization enables interesting applications such as augmented reality or robot navigation. This is particularly useful in indoor environments where other localization technologies, such as GNSS, fail. Indoor spaces impose interesting challenges on visual localization algorithms: occlusions due to people, textureless surfaces, large viewpoint changes, low light, repetitive textures, etc. Existing indoor datasets are either comparably small or do only cover a subset of the mentioned challenges. In this paper, we introduce 5 new indoor datasets for visual localization in challenging real-world environments. They were captured in a large shopping mall and a large metro station in Seoul, South Korea, using a dedicated mapping platform consisting of 10 cameras and 2 laser scanners. In order to obtain accurate ground truth camera poses, we developed a robust LiDAR SLAM which provides initial poses that are then refined using a novel structure-from-motion based optimization. We present a benchmark of modern visual localization algorithms on these challenging datasets showing superior performance of structure-based methods using robust image features. The datasets are available at: https://naverlabs.com/datasets
翻译:利用视觉定位来估计照相机的确切位置,可以扩大现实或机器人导航等令人感兴趣的应用,这在室内环境中特别有用,因为其他本地化技术,如全球导航卫星系统,都失败了。室内空间对视觉本地化算法提出了有趣的挑战:由于人造成的分层、无纹理表面、大视野变化、低光度、重复质谱等等。现有的室内数据集或可比较小,或仅涵盖所述挑战的一小部分。在本文中,我们为挑战性现实世界环境中的视觉本地化引入了5个新的室内数据集。这些数据集是在韩国首尔一个大型购物商场和一个大型地铁站中捕获的,使用了10个摄影机和2个激光扫描仪的专用绘图平台。为了获得准确的地面真象摄像器,我们开发了一个强大的LIDAR SLAM,它提供了最初的配置,然后通过基于优化的新结构来加以改进。我们在这些富有挑战性的数据集上提出了现代本地本地本地化算法的基准,展示了基于稳健图像特征的结构基方法的优异性性。数据集可在以下查阅: httpstax://naverblas.