We study fairness in classification, where one wishes to make automated decisions for people from different protected groups. When individuals are classified, the decision errors can be unfairly concentrated in certain protected groups. We develop a fairness-adjusted selective inference (FASI) framework and data-driven algorithms that achieve statistical parity in the sense that the false selection rate (FSR) is controlled and equalized among protected groups. The FASI algorithm operates by converting the outputs from black-box classifiers to R-values, which are intuitively appealing and easy to compute. Selection rules based on R-values are provably valid for FSR control, and avoid disparate impacts on protected groups. The effectiveness of FASI is demonstrated through both simulated and real data.


翻译:我们研究分类的公平性,人们希望为来自不同受保护群体的人作出自动决定。当个人被分类时,决策错误可能不公平地集中在某些受保护群体中。我们开发了公平调整选择性推断框架和数据驱动算法,实现统计均等,即虚假选择率(FSR)在受保护群体中受到控制并平等。FASI算法通过将黑盒分类器的产出转换为R值来运作,后者直觉地具有吸引力并易于计算。基于R值的选择规则对于FSR的控制是可行的,避免对受保护群体产生不同的影响。FASI的有效性通过模拟数据和真实数据得到证明。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
14+阅读 · 2020年12月17日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员