The circular coordinates algorithm of de Silva, Morozov, and Vejdemo-Johansson takes as input a dataset together with a cohomology class representing a $1$-dimensional hole in the data; the output is a map from the data into the circle that captures this hole, and that is of minimum energy in a suitable sense. However, when applied to several cohomology classes, the output circle-valued maps can be "geometrically correlated" even if the chosen cohomology classes are linearly independent. It is shown in the original work that less correlated maps can be obtained with suitable integer linear combinations of the cohomology classes, with the linear combinations being chosen by inspection. In this paper, we identify a formal notion of geometric correlation between circle-valued maps which, in the Riemannian manifold case, corresponds to the Dirichlet form, a bilinear form derived from the Dirichlet energy. We describe a systematic procedure for constructing low energy torus-valued maps on data, starting from a set of linearly independent cohomology classes. We showcase our procedure with computational examples. Our main algorithm is based on the Lenstra--Lenstra--Lov\'asz algorithm from computational number theory.
翻译:德席尔瓦、 莫罗佐夫 和 Vejdemo- Johansson 的圆形坐标算法 将 数据 和 代表数据中 $$1 维洞的共生类 相连接的一组数据作为输入输入; 输出是 数据 从数据到圆圈的地图, 捕捉到这个洞, 这是一种最起码的能量。 但是, 当应用到多个共生类时, 产出周期值地图可以是“ 地平线相关 ”, 即使所选的共生类是线性独立的。 原始工作显示, 可以通过一组适当的共生类整形线性组合获得关系较小的地图, 由检查选择线性组合 。 在本文中, 我们确定了一个正式的圆状值地图的几何相关性概念, 在Riemannian 多重情况下, 与Dirichletlet 格式相对应, 一种双线形的地图形式。 我们描述了从一组线性独立共生的共生共生基因学类中构建低能量图状图的系统程序。 我们用计算法根据Len- loginalalal- logalalalalal- dalbalbalationalbalgalbalgalgal</s>