Few-shot learning (FSL) is one of the significant and hard problems in the field of image classification. However, in contrast to the rapid development of the visible light dataset, the progress in SAR target image classification is much slower. The lack of unified benchmark is a key reason for this phenomenon, which may be severely overlooked by the current literature. The researchers of SAR target image classification always report their new results on their own datasets and experimental setup. It leads to inefficiency in result comparison and impedes the further progress of this area. Motivated by this observation, we propose a novel few-shot SAR image classification benchmark (FewSAR) to address this issue. FewSAR consists of an open-source Python code library of 15 classic methods in three categories for few-shot SAR image classification. It provides an accessible and customizable testbed for different few-shot SAR image classification task. To further understanding the performance of different few-shot methods, we establish evaluation protocols and conduct extensive experiments within the benchmark. By analyzing the quantitative results and runtime under the same setting, we observe that the accuracy of metric learning methods can achieve the best results. Meta-learning methods and fine-tuning methods perform poorly on few-shot SAR images, which is primarily due to the bias of existing datasets. We believe that FewSAR will open up a new avenue for future research and development, on real-world challenges at the intersection of SAR image classification and few-shot deep learning. We will provide our code for the proposed FewSAR at https://github.com/solarlee/FewSAR.
翻译:暂无翻译