Generative adversarial imitation learning (GAIL) is a model-free algorithm that has been shown to provide strong results in imitating complex behaviors in high-dimensional environments. In this paper, we utilize the GAIL model for text generation to develop empathy-based context-aware conversational AI. Our model uses an expert trajectory of empathetic prompt-response dialogues which can accurately exhibit the correct empathetic emotion when generating a response. The Generator of the GAIL model uses the GPT-2 sequential pre-trained language model trained on 117 million parameters from 40 GB of internet data. We propose a novel application of an approach used in transfer learning to fine tune the GPT-2 model in order to generate concise, user-specific empathetic responses validated against the Discriminator. Our novel GAIL model utilizes a sentiment analysis history-based reinforcement learning approach to empathetically respond to human interactions in a personalized manner. We find that our model's response scores on various human-generated prompts collected from the Facebook Empathetic Dialogues dataset outperform baseline counterparts. Moreover, our model improves upon various history-based conversational AI models developed recently, as our model's performance over a sustained conversation of 3 or more interactions outperform similar conversational AI models.
翻译:对抗性模拟学习(GAIL)是一种示范式的零用语言算法(GAIL ), 它被证明为在高维环境中模仿复杂行为方面提供了强有力的成果。 在本文中,我们使用GAIL模型生成文本,以开发基于同情的、有背景的谈话AI。 我们的模型使用基于同情性的快速反应对话专家轨迹, 能够在产生响应时准确地展示正确的同情性情感。 GAIL模型的生成者使用GPT-2 顺序的预先培训语言模型, 以来自40GB互联网数据的11 700万参数为培训。 我们建议采用创新应用用于传输学习的方法, 以微调 GPT-2 模型, 以产生简明、 用户专用的反感性反应。 我们的新GAIL模型使用基于情绪分析历史的强化学习方法, 以个性化的方式对人的互动做出正确的反应。 我们发现,我们的模型在从Facebook 同情性对话中收集的各种人类生成的提示中, 以数据设置出超越了基准对等。 此外, 我们的模型改进了各种基于历史对话的互动式对话模式的互动, 超越了我们最近的AI AI 模型。