In interactive multi-agent settings, decision-making and planning are challenging mainly due to the agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving constrained dynamic games and determining the interaction outcome in the form of generalized Nash Equilibria (GNE) pose computational challenges due to the need for solving constrained coupled optimal control problems. In this paper, we address this challenge by proposing to leverage the special structure of many real-world multi-agent interactions. More specifically, our key idea is to leverage constrained dynamic potential games, which are games for which GNE can be found by solving a single constrained optimal control problem associated with minimizing the potential function. We argue that constrained dynamic potential games can effectively facilitate interactive decision-making in many multi-agent interactions. We will identify structures in realistic multi-agent interactive scenarios that can be transformed into weighted constrained potential dynamic games (WCPDGs). We will show that the GNE of the resulting WCPDG can be obtained by solving a single constrained optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies and show that we achieve significant improvements in solve time compared to state-of-the-art game solvers. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.
翻译:暂无翻译